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Abstract—Among the most pressing research and development challenges facing geovisual analytics is the establishment of a 

science of interaction that will inform the design of visual interfaces to computational methods. The most promising work on 

interaction to date has attempted to identify and articulate the fundamental interaction primitives that define the complete design 

space for the user experience. In this paper, we report on an interaction study leveraging a three-stage interaction primitive 

taxonomy in order to investigate how variations in interaction primitive combinations impact broader interaction strategies. 

GeoVISTA CrimeViz—a geovisual analytics application developed in partnership with the Harrisburg Police Department—was 

leveraged as a living laboratory for examining the nature of interaction strategies. Ten law enforcement officers with the Harrisburg 

Police Department completed a set of fifteen benchmark tasks while their interactions were logged. Experimental results suggested 

that use of the interface increases as the user objective increases in sophistication. Results also confirmed Shneiderman’s visual 

information seeking mantra as the primary interaction strategy during visual exploration and analysis. Further, consistently 

successful and suboptimal interaction strategies were summarized and articulated as interaction personas, allowing for the 

establishment of interface design recommendations for promoting positive personas and avoiding negative ones. 

Index Terms—geovisual analytics, science of interaction, interaction primitives, interaction strategies, interaction personas 

 

 

 

Geovisual analytics at its core requires a synergistic relationship 

between humans and machines. Geovisual analytics differs from 

prior research approaches to cartography and visualization in its 

focus on the human reasoning faculties needed to build evidence and 

generate actionable knowledge about complex problems [1]. 

However, the complexity of the problem at hand—and the datasets 

collected about said problem—too often surpass human cognitive 

limits. As a result, geovisual analytics also differs from prior 

research approaches in its application of sophisticated statistical and 

computational techniques to extract relevant insights from 

voluminous datasets [2]. In this way, the machine scales the human 

to meet the complexity of the problem. 

In the following, we treat neither the human nor the machine in 

isolation, but rather approach the „glue‟ that makes their synergy 

possible: the visual interface. The design and development of map-

based interfaces that are both useful and usable is tantamount to 

successful geovisual analytics, as it is through the interface that 

insights are shared between human and machine. Our research 

contributes to an emerging science of interaction that spans the 

related fields of human-computer interaction, information 

visualization, and usability engineering [3]. Importantly, Thomas et 

al. [4: p76] include “the creation of a new interaction to support 

visual analytics” among the core set of research and development 

initiatives facing visual analytics. 

Existing research on interaction to date has attempted to describe 

the complete interaction solution space by reducing the interaction 

process into its smallest structural constituents, resulting in 

taxonomies of interaction primitives [5]. Such interaction primitives 

are the conceptual parallel to the visual variables in representation 

design [6], and therefore serve as a foundational framework for the 

science of interaction. However, there is relatively minimal research 

leveraging the interaction primitives to track and assess competing 

interaction strategies, or sequences of interaction primitives applied 

to complete an exploratory or analytical task [7]. By relating 

successful or suboptimal interaction strategies to their constituent 

interaction primitives, the ultimate promise of a science of 

interaction may be realized: empirically-derived and broadly-

generalizable design and use guidelines for visual interfaces. 

To this end, we conducted an interaction study with a geovisual 

analytics application called GeoVISTA CrimeViz using the 

interaction primitives as the theoretical unpinning for evaluating user 

interaction strategies with the application. GeoVISTA CrimeViz (Fig. 

1) is a collaborative project between the Penn State GeoVISTA 

Center and the Harrisburg (Pennsylvania, USA) Bureau of Police. 

There is great and largely untapped potential for geovisual analytics 

to support the functions of policing and public safety. Law 

enforcement personnel simply call the hypotheses generated from 

visual exploration and analysis by a different name: hunches. The 

GeoVISTA CrimeViz application enables law enforcement officers to 

build complex queries of their crime incident database in space, time, 

and attribute and to generate flexible aggregates of the query results 

for display in linked map and timeline visualizations. Ultimately, law 

enforcement officers can drill-down into potential incidents of 

interest, building evidence for solving past crimes and generating 

actionable knowledge for preventing future ones. 

 

Contemporary research on the science of interaction recognizes a 

fundamental distinction between interactions, or the overarching 

action-response sequence between a human and a machine, and 

interfaces, or the specific tools developed to support the interaction 

in a digital environment [8]. In both the academy and industry, it is 

increasingly common to refer to this distinction as user experience 

(UX) design versus user interface (UI) design [9]. By considering the 

complete user experience, Norman [10] segments a single interaction 

(physical or virtual) into a series of seven stages: (1) forming the 

goal, (2) forming the intention, (3) specifying an action, (4) 

executing an action, (5) perceiving the state of the system, (6) 

interpreting the state of the system, and (7) evaluating the outcome.  

Theoretically, a unique taxonomy of interaction primitives can be 

assembled at each of Norman‟s [10] stages of interaction in order to 

articulate, and ultimately to account for, the complete UX design 

space. In past work, we found that most existing taxonomies of 

interaction primitives align primarily with one of three of these 

stages [5, 11]. First, many taxonomies enumerate user objectives, or 

close-ended tasks that can be completed with a visualization. 

Objective taxonomies align closely with the second stage of 

interaction, forming the intention. A second approach is to 

compartmentalize primitives according to interface operators, or the 

generic kinds of functionality that can be implemented in an 

interface. Operator taxonomies align closely with the third stage of 

interaction, specifying an action. The final approach lists primitives 

according to characteristics of the interaction operand, or the 

recipient of the interaction. In geovisual analytics, the operand 
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often is the map itself, or the object being manipulated between the 

fourth (executing an action) and fifth (perceiving the state of the 

system) stages of interaction. Importantly, objective and operand 

combinations describe benchmark tasks for geovisual analytics, as 

they define both the user‟s intention in manipulating the visualization 

and the aspect of the visualization to be manipulated. 

In order to produce a „composite‟ taxonomy of interaction 

primitives, the first author completed a card sorting study requiring 

participants to organize example statements derived from both 

literature and practice on cartography and geovisual analytics [12]. 

Table 1 lists and defines the resulting primitives, organized 

according to objective, operator, and operand. We used the three-

stage taxonomy of interaction primitives described in Table 2 to 

inform the interaction study with GeoVISTA CrimeViz, given that 

this taxonomy is specific to map-based visualization and therefore 

geovisual analytics. In total, 8 of the 12 operators were implemented 

in GeoVISTA CrimeViz and interaction with all three operands was 

supported (see Table 3 for a description of the supported operator-

operand combinations). 

# An interaction study is a method that requires participants to 

complete a set of benchmark tasks with an interface in a controlled 

setting while their interactions are captured in an interaction log [13]. 

Our research builds upon a small set of interaction studies reported in 

the cartography and geovisual analytics literature, including 

MacEachren et al. [14], Andrienko et al. [15], Edsall [7], and 

Robinson [16, 17]. Purpose-driven interaction primitive taxonomies 

were developed as part of each of these interaction studies in order to 

analyze the collected interaction logs. Thus, these studies provide 

important examples of employing an interaction primitive taxonomy 

(primarily operator-based taxonomies) to codify user interactions to 

the end both of improving the evaluated interface as well as 

identifying prototypically successful interaction strategies that may 

be generalizable beyond the evaluated interface. The applied and 

basic insights generated from each interaction study were used to 

inform the design of the interaction study on GeoVISTA CrimeViz. 

 

We purposively sampled ten participants from the Harrisburg Bureau 

of Police to participate in the interaction study using GeoVISTA 

CrimeViz as a ‘living laboratory’. The primary criteria for 

participation in the interaction study included work responsibilities 

that are supported by GeoVISTA CrimeViz and general familiarity 

with the GeoVISTA CrimeViz application. The participant sample 

therefore was characterized by high levels of user expertise and 

motivation. The sample size of n=10 aligns with expert involvement 

in the interaction studies reviewed above [7, 14-17], which range 

from n=6 to n=10 experts. 

 

Objectives   

Identify examine and understand a single feature  

Compare 
determine the similarities and differences between two 
features 

Rank 
determine the order or relative position of two or more 
features 

Associate determine the relationship between two or more features 

Delineate organize features into a logical structure 

Operators 

Reexpress 
set or change the visual isomorph used in the representation 
or information views linked to the representation 

Arrange 
manipulate the layout of a visual isomorph when multiple, 
typically linked visually isomorphic views are provided 

Sequence generate an ordered set of related representations 

Resymbolize 
set or change the design parameters of a representation form 
without changing the represented features or the 
representation form itself 

Overlay adjust the feature types included in the representation 

Reproject 
set or change the projection used to transform the 
information to a two-dimensional screen 

Pan change the center of the representation 

Zoom change the scale and/or resolution of the representation 

Filter 
alter the representation, and information views linked to the 
representation, to indicate features that meet one or a set of 
user-defined conditions 

Search 
alter the representation, and information views linked to the 
representation, to indicate a particular feature of interest 

Retrieve request specific details about a feature or features of interest 

Calculate 
derive new information about a feature or features of 
interest 

Operands 

Space-Alone 
interact only with the geographic component of the 
representation 

Attributes-
in-Space 

interact with the temporal component of the representation 
to understand how a dynamic geographic phenomenon acts 
over time 

Space-in-
Time 

interact with the attribute component of the representation to 
understand how one or several characteristics of a 
geographic phenomenon varies across space 

 

We conducted the interaction study in a private room used for 

depositions and interrogations in the Harrisburg Police Headquarters. 

We configured a simple usability laboratory in the interview room, 

which consisted of a laptop computer that we used during testing and 

an external monitor, keyboard, and mouse that the participant used 

during testing. A duplicate display of GeoVISTA CrimeViz was 

shown on both the laptop and external monitor, and the investigators 

each had control over the application through our respective input 

devices. We logged the interactions with GeoVISTA CrimeViz using 

Camtasia Studio, a video recording application that records screen 

interactions; we captured audio backups of the sessions using a voice 

recorder.  

Following an initial exploration period, we required participants 

to answer a set of 15 close-ended questions using GeoVISTA 

CrimeViz. The questions were based on objective-operand 

benchmark tasks (Table 1), with one question generated for each 

objective (identify, compare, rank, associate, and delineate) and 

operand (space-alone, attributes-in-space, space-in-time) pairing. 

Before testing began, we first administered a pilot study with two 

additional stakeholders at the Harrisburg Bureau of Police in order to 

revise questions that were unclear or poorly worded, that potentially 

had more than one correct or partially correct answer, and that had 

answers that participants would be able to recall from experience 

without first interacting with GeoVISTA CrimeViz. 

During the interaction study, we read each question aloud and 

then handed a print of the question to the participant for reference. 

The order of the questions was randomized, with no two participants 

receiving the same question order. Unlike the exploration period, we 

did not allow participants to ask for clarification about GeoVISTA 

CrimeViz while completing the benchmark tasks. Once the 

Fig 1. GeoVISTA CrimeViz (http://www.geovista.psu.edu/CrimeViz) 

 

Table 1. Interaction Primitives 



participants believed they had found the answer to the question, we 

instructed participants to state it aloud for the audio recording. We 

provided participants a maximum of three minutes to answer each 

question in order to ensure the set of 15 questions was completed in 

45 minutes or less; only four of the total 150 task (15 questions by 10 

participants) exceeded the three minute limit, with all participants 

completing the formal testing component of the cartographic 

interaction study in 20-25 minutes. After an answer was verbalized 

for a question, or after the three minute time limit expired, we 

refreshed the browser containing GeoVISTA CrimeViz to force the 

participant to start from the default overview when answering the 

subsequent question.  

 

We analyzed the interaction logs in two stages. In the first stage, we 

calculated descriptive statistics on the interaction primitives in 

aggregate form in order to draw broad connections across objectives, 

operators, and operands. Table 2 provides descriptive statistics 

across objective-operand pairings based on metrics recommended by 

Sweeney et al. [18]. Participants performed well overall, answering 

123 of the 150 total questions correctly (82%). The high accuracy 

rating perhaps is a reflection on the high levels of user expertise and 

motivation, as well as the opening exploration session. On average, 

participants required 1:00 (one minute) and employed 3.4 different 

operators a total of 7.4 times to answer each question. 

The Table 2 metrics indicate an increasing level of difficulty in 

objectives (identify→>compare→rank→associate→delineate) that 

reflects a previously hypothesized continuum in cognitive 

sophistication [19]. The identify objective (i.e., the least 

sophisticated) required the least amount of time overall (0:31) and 

the fewest operators per benchmark task (3.1). Conversely, the 

delineate objective (i.e., the most sophisticated) required the most 

amount of time overall (1:27) and the most operators per benchmark 

task (9.8); the delineate objective also resulted in the most incorrect 

answers (only 67% accuracy). 

Regarding the operand component of the benchmark tasks, 

participants most easily responded to questions regarding the space-

alone operand; this finding holds across all five metrics. Summary 

metrics regarding the attributes-in-space and space-in-time operands 

were similar, with participants requiring slightly more time to 

respond to questions including the attribute-in-space operand and 

slightly more frequent and diverse operators to respond to questions 

including the space-in-time operand. Interestingly, participants only 

had problems answering questions about the attribute-in-space 

operand within the allotted three minute time limit, but were 

considerably less accurate in their responses to questions about the 

space-in-time operand. 

Table 3 provides descriptive statistics across operator-operand 

pairings. Retrieve was the most frequently and extensively applied 

operator (frequency=395, extensiveness=71%), followed by filter 

(frequency=240, extensiveness=60%) and zoom (frequency=127, 

extensiveness=44%) respectively; no other operators were used in 

more than one-third of the 150 interaction strategies. Such a reliance 

on retrieve, filter, and zoom suggests that Shneiderman's [20] visual 

information seeking mantra (overview first, zoom and filter, then 

details on demand) was the primary participant interaction strategy. 

Regarding operands, participants least commonly interacted with 

the space-alone operand (frequency=175, extensive=33%). Further, 

several of the interfaces provided to manipulate the space-alone 

operand were ignored altogether (e.g., search and overlay by space-

alone). Because a map first and foremost is a spatial representation 

supporting many spatial tasks without digital interaction, interfaces 

for manipulating the attribute and temporal components of a dataset 

may be more important in geovisual analytics than those 

manipulating the spatial components, somewhat paradoxically so. 

 

 

 

Objective-Operand A B C D E 

All Identify 100% 87% 0:31 3.1 2.1 

Space-Alone 100% 100% 0:18 1.3 1.2 

Attributes-in-Space 100% 100% 0:32 1.6 1.5 

Space-in-Time 100% 60% 0:43 6.5 3.6 

All Compare 100% 83% 0:58 7.4 2.7 

Space-Alone 100% 90% 0:25 7.6 3.0 

Attributes-in-Space 100% 100% 0:57 3.5 1.6 

Space-in-Time 100% 60% 1:32 11.2 3.4 

All Rank 97% 93% 0:56 9.1 4.3 

Space-Alone 100% 90% 0:42 8.9 3.9 

Attributes-in-Space 90% 100% 1:11 11.2 5.1 

Space-in-Time 100% 90% 0:53 7.1 3.8 

All Associate 100% 80% 1:06 7.6 3.2 

Space-Alone 100% 100% 0:18 3.0 1.6 

Attributes-in-Space 100% 80% 1:24 10.5 5.0 

Space-in-Time 100% 60% 1:36 9.2 3.4 

All Delineate 90% 67% 1:27 9.8 4.6 

Space-Alone 100% 90% 1:08 8.8 4.8 

Attributes-in-Space 70% 30% 2:13 13.6 4.9 

Space-in-Time 100% 80% 1:02 7.0 4.2 

All Space-Alone 100% 94% 0:34 5.9 2.9 

All Attributes-in-Space 92% 82% 1:16 8.1 3.5 

All Space-in-Time 100% 70% 1:09 8.2 3.7 

Total 97% 82% 1:00 7.4 3.4 

Operator-Operand Frequency Extensiveness 

All Reexpress 78 33% 

Space-in-Time 78 33% 

All Sequence 32 9% 

Space-in-Time 32 9% 

All Overlay 57 31% 

Space-Alone 0 0% 

Attributes-in-Space 57 31% 

All Pan 121 27% 

Space-Alone 81 19% 

Space-in-Time 40 11% 

All Zoom 127 44% 

Space-Alone 82 26% 

Space-in-Time 45 23% 

All Filter 240 60% 

Space-Alone 12 8% 

Attributes-in-Space 90 21% 

Space-in-Time 138 49% 

All Search 42 19% 

Space-Alone 0 0% 

Attributes-in-Space 42 19% 

All Retrieve 395 71% 

Attributes-in-Space 185 39% 

Space-in-Time 210 39% 

All Space-Alone 175 33% 

All Attributes-in-Space 248 78% 

All Space-in-Time 543 63% 

Total 1092 100% 

Table 2. Interactions by Objective & Operand Pairings (A=Percent 
Completed, B=Percent Correct, C=Average Time, D=Frequency of 
Operators, E=Diversity of Operators) 

Table 3. Interactions by Operator & Operand Pairings (A=Frequency 
of Operators, B=Extensiveness across Benchmark Tasks) 



In the second stage of analysis, we created timeline graphics 

representing the interaction logs in order to interpret individual 

interaction strategies and compare competing interaction strategies 

[21]. Through qualitative interpretation of the interaction logs, we 

were able to identify six interaction personas that characterized 

chronic issues in applying operators suboptimally that occurred 

across participants and across benchmark tasks: 

1. blind-sequencer: interaction behavior in which rapid 

application of the sequence operator results in the user 

missing spatiotemporal patterns depicted in the map view;  

2. excessive-filterer: interaction behavior in which the filter 

operator is unnecessarily applied as part of routine use with 

the application (i.e., while following the visual information 

seeking mantra), negatively impacting productivity due to the 

computing time and cognitive workload required to process 

the filter result; 

3. lost-browser: interaction behavior in which the zoom and pan 

operators are applied in rapid succession, indicating that the 

user is disoriented by the current map view; 

4. mistaken-reexpresser: interaction behavior in which the 

reexpress operator is applied to generate an inappropriate 

representation for the user objective, leading to 

misinterpretation of the provided visualization;  

5. uninformed-zoomer: interaction behavior in which the zoom 

operator is applied without the proper context provided by the 

overlay operator, resulting in user confusion about what he or 

she is viewing;  

6. unsure-retriever: a persona indicating interaction behavior in 

which the retrieve operator is applied in rapid succession, 

suggesting a time in which the user does not know how the 

filter tools support proper refinement of the mapped features. 

There are equivalent positive interaction personas performed during 

successful interaction strategies that represent the inverse of the 

associated negative personas. 

 

In this paper, we reported on an interaction study using the 

GeoVISTA CrimeViz geovisual analytics application as a ‘living 

laboratory’ to understand the association between interaction 

primitives and interaction strategies. The experimental results 

revealed several broad insights towards this research goal, including 

an increased use of the interface as the objective increases in 

sophistication and the common (although at times suboptimal) 

completion of Shneiderman’s [20] visual information seeking mantra 

using filter, zoom, and retrieve. The identification and tracking of 

interaction personas appears to be a particularly promising way of 

relating interaction primitives to interaction strategies, as suboptimal 

interaction primitive combinations can be suppressed in the design of 

the geovisual analytics application. Additional research is needed to 

further tease out the consequential relationships of interaction 

primitive pairings on the success of interaction strategies and to 

account for the identified interaction personas in geovisual analytics 

tools and techniques. 
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