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Abstract

Topical relations, trends and geographic context are three dimensions of heterogeneous data sets that
play an important role in many semantic applications. Several visual representations have been devel-
oped which separately address each of these three dimensions. However, in application domains with
data sets characterized by patterns not only within each separate dimension, but also by patterns be-
tween the dimensions, these patterns may resist analysis unless all dimensions can be analyzed simulta-
neously. This paper aims to provide a framework for the simultaneous analysis and visualization of mul-
tiple dimensions by means of tightly coupled views [20]. The resulting user interface allows investigating
the evolution of knowledge by simultaneously showing topical, temporal and geospatial patterns in hete-
rogeneous data sets. The synchronization of the tightly coupled views will build upon Multiple Coordi-
nated Views Technology [17] and on lessons learned from the FIT-IT Semantic Systems Project IDIOM
[26], which has introduced the interface metaphor of Knowledge Planets [23]. The Media Watch on Cli-
mate Change [27] implements this metaphor and demonstrates the potential of geospatial Web technolo-
gy for visualizing semantic associations within virtual spaces.

This prototype is just a first step towards building a portfolio of modular visualization services that use
geobrowsers such as NASA World Wind and Google Earth as generic image rendering engines for the fol-
lowing types of data: (i) geo-referenced information (news articles, statistical data, user profiles, etc.), (ii)
semantic associations, (iii) ontological knowledge, (iv) organizational workflows, and (v) social networks.

Knowledge Planets

Diverting geobrowsers from their traditional purpose and associating them with semantically referenced
information, they can be used to visualize knowledge planets based on layered thematic maps (see Figure
2). Such maps are visual representations of virtual spaces based on a landscape metaphor [4]. Much has
been written about the geography of virtual spaces [3; 8; 9; 24]. In contrast to knowledge planets, howev-
er, many of these spaces bear little resemblance to the Earth’s physical features.

Generally, two sets of information need to be integrated and mapped to latitude and longitude - image
tiles and terrain information. Knowledge planets are generated by orthographically projecting and tiling
thematic maps. The planet metaphor allows visualizing massive amounts of textual data. At the time of
map generation, the knowledge planet’s topography is determined by the content of the knowledge base.
In this process, spatial proximity in the layout is a measure for the relatedness of documents. The peaks of
the virtual landscape thus indicate abundant coverage on a particular topic (their height being related to
the number of documents within the cluster), whereas valleys represent sparsely populated parts of the
information space.

Extending the planet metaphor, search results can be visualized as cities, landmarks or other objects of
the manmade environment. Zooming provides an intuitive way of selecting the desired level of aggrega-
tion. Unique resource identifiers link concepts embedded in the thematic maps to related news articles,
encyclopedia entries or papers in scientific journals. With such a query interface that hides the underlying
complexity, exploring complex data along multiple dimensions is as intuitive as using a geobrowser to get
a glimpse of the next holiday destination.

The knowledge planet prototype of Figure 2 is based on Visislands, a thematic mapping algorithm simi-
lar to SPIRE’s Themescape [25] and its commercial successor Cartia/Aureka, which supports dynamic
document clustering [1; 21]. Initially, the document set is pre-clustered using hierarchical agglomerative
clustering [12], randomly distributing cluster centroids in the viewing rectangle. The documents belong-
ing of a cluster, as determined by the pre-clustering, are then placed in circles around each centroid. A



linear iteration force-directed placement algorithm adapted from Chalmers [5] optimizes the arrange-
ment. The result resembles a contour map of islands. Fortunately, algorithms based on force models easi-
ly generalize to the knowledge planets’ spherical geometries.

Visualizing Temporal Data

Various approaches have been developed for visualizing temporal data [18]. In the information visualiza-
tion literature, well-known metaphors for presenting data with a pronounced temporal component are
ThemeRiver [10] or the Perspective Wall [16]. In the context of this paper, temporal activity and intensity
views are of particular interest (see Figure 1). Temporal activity views visualize presence and duration of
events, which are related to a set of color-coded entities, such as different persons or topical clusters
present in a document repository. Events are visualized as rectangles with the duration of events being
proportional to the width of the corresponding rectangles. Activity views and similar visualizations pro-
vide a clear representation of event boundaries, but are not suitable for overlapping events. Temporal
intensity views visualize the intensity of those events, whereby overlapping events are stacked over each
other to produce “hills”. The height of these “hills” indicates the cumulative intensity of events at the giv-
en point in time. Intensity view and similar visualizations are suitable for representing overlapping
events, but cannot provide a clear representation of event boundaries.

Despite the visual appeal of ThemeRiver visualizations, there are conceptual limits with regards to how
many dimensions developers can integrate into a single display. Inexperienced, non-technical users in
particular can get overwhelmed when too many dimensions are presented within the same diagram.
Coordinated multiple views provide effective navigation mechanisms for complex data sets, whereby
each visualization reveals a different facet of the data (such as temporal, topical or spatial dimensions).
Truly scalable visual applications - in terms of always having the option to add additional dimensions
whenever the need arises -require a reliable high-performance architecture based on a unified data mod-
el for synchronizing tightly coupled views in response to queries and user actions such as zooming, selec-
tion and filtering.
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Figure 1. Temporal activity and intensity diagram [20]; three-dimensional ThemeRiver [11]

Snap Together [19] is an early example in which users dynamically combine and bind different visualiza-
tions on-the-fly to produce a customized user interface. Oculus GeoTime [14] is an example of a represen-
tation that merges geospatial and temporal developments within a single 3D view. Brodbeck and Girardin
[2] employ multiple coordinated views for analysis of geo-referenced, high-dimensional data sets. The
IDIOM Project [22] also falls into the group of geospatial-topical systems as it employs a geospatial view
and a semantic landscape for browsing large document sets within a single, coordinated interface.

Dynamic Topographies for Semantic Maps

While temporal activity and temporal intensity views are suitable for discovering temporal patterns and
temporal behavior of entities, they generally cannot express complex, manifold relations and patterns in
heterogeneous datasets. Semantic maps, by contrast, are capable of presenting complex relations in the
data set due to the fact that spatial proximity in the layout is a measure for relatedness between objects.
But temporal behavior cannot be visualized in a static landscape. The next generation of semantic map
algorithms proposed in this paper will show how virtual globe architectures are ideally suited to visualize
the evolution of information spaces. These algorithms will specifically address temporal changes in the
underlying topography.



Visually resembling tectonic processes in the natural world, dynamic rendering will reflect both long-
term trends and short-term fluctuations in the knowledge space (in geology, these processes are referred
to as epeirogeny and orogeny, respectively). A major international event that causes intensive media cov-
erage can be visualized as a volcano-like structure rapidly rising from the seabed, for example, forming a
new island that might remain as a permanent addition to the knowledge space (compare Figure 2; the
photo serves to illustrate the underlying idea; to visualize the rise/decay of a topic, the actual mapping
algorithm will elevate/lower a set of concentric contour lines).

Figure 2. Knowledge planet prototype [23]; volcanic cone of an island off Iceland’s coast [28]

NASA World Wind'’s Time Control Widget, a new feature of release 1.4, provides an effective way to con-
trol such animations and explore the evolution of information spaces. Even more powerful as a control
element are temporal activity and temporal intensity views. To understand how the dynamic topography
of the knowledge planet is created, it is best to imagine the surface of the planet being placed so that the
temporal axis of the temporal view is orthogonal to the landscape (Figure 3; right); the surface becomes a
slice of the temporal view for a chosen interval in time. The landscape view thus shows relations between
entities, but only depending on the data from the selected time interval. As the user slides the selected
time interval along the time axis (panning along the time axis), or modifies the width of the interval (tem-
poral zooming), the landscape view updates itself dynamically to reflect the changes in the selected sub-
set of the data.

Note that when the visualized data subset is modified (some documents are removed, new documents
are added) the semantic map is not just filtered - it is its topography that is altered. Old island and hills
may disappear, change their shape or even new ones may arise from the sea. Other modifications of the
topography, such as drifting of hills towards each other (correspond to merging of previously separate
clusters) or splitting of an island (cluster breakup) may also occur. Transitions of the landscape topogra-
phy from an old to a new temporal configuration must be incremental and adaptive in the sense that only
those changes should be introduced in the topography which are really necessary. The configuration of
the parts of the topography, which are little or not at all affected by the modification of the selected time
interval, should remain as stable as possible with respect to their previous position and shape. In this way
the user will be able to understand the modified topography immediately through the recognition and
orientation provided by the already known, preserved (or scarcely modified) elements of the topography.
These adaptive, incremental transitions shall be smoothly animated so that the user can follow and un-
derstand the changes.
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Figure 3. Document distribution over time on top and temporal subdivision into segments (left);
knowledge planet surface as a temporal slice across the time axis (right).



The above described behavior requires fast, incremental, scalable layout algorithms: when a data set is
modified a full re-computation of the whole data set shall not be performed - the changes are merely in-
corporated into the existing configuration which saves processing time and ensures that unmodified
structures can be recognized by the user. A class of layout algorithms based on the force-directed place-
ment approach [7] fulfils the requirements of incrementality and scales very well in their optimized ver-
sions. O(n*log n) time complexity is possible, for example with the algorithm [13] used to generate the
prototype in Figure 2.

Dynamic landscape topographies have only been realized for very small data sets of up to few hundred
objects [15]. To address the increased computational and storage demands resulting from dynamic topo-
graphies and very large data sets, a ‘data squashing’ approach [6] will be applied. Data squashing can be
defined as the construction of a summarized, “compressed” dataset which is significantly smaller than the
original one, but leads to approximately the same analysis results as the original. Construction of the
summarized, “squashed” data set will be realized by employing automatically generated ontologies (see
previous section) to guide the subdivision of the original information space. The advantages of this ap-
proach are a potentially large decrease of both memory and CPU-time consumption at the possible cost of
some reduction in accuracy: Instead of calculating a similarity matrix between one million documents, for
example, processing ten sets of 100,000 documents each is computationally less expensive. The sub-
division will also help improve the automated generation of captions for topological features; an essential
component for visualizing dynamic topographies through interfaces that support multiple layers of ab-
straction.

To address requirements arising from the adaptive dynamic topographies and the capability to choose
the time interval which shall be visualized, the data set will be subdivided into temporal segments. This is
represented in Figure 3 (left) with the document distribution over time shown on top (a dot represents
an event or a document at the given time point) and a hierarchical temporal subdivision of the data set
(shown in blue). Temporal segments are produced starting with the top-level segment (dark blue, con-
tains the whole data set), which is recursively subdivided to produce a hierarchy of ever shorter seg-
ments. A separate layout for each segment is pre-computed and stored, so when the user changes the se-
lected time interval (shown as a transparent box) suitable pre-computed layouts are chosen (segments
with red borders in the figure bellow), filtered and used as a starting position for the on-the-fly computa-
tion.

Figure 4 shows a mock-up of the RAVEN interface, composed out of nine different views. The interface
employs three monitors with the dynamic landscape shown on the left, the geospatial browser on the
right, and a central component offering several views: document view (top-left), search results view (top-
right), temporal activity and intensity views (bottom-left), and an ontology browser (bottom-right).
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Figure 4. Interface mockup with temporal controls (left: Time Control Widget; middle: activity and intensi-
ty diagrams) to control an ensemble of nine tightly coupled views on three different screens.
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