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ABSTRACT

In analyzing syndromic surveillance data, epidemiologists are faced
with various data restrictions due to issues with both data collection
and privacy preservation. Often time, the data must be viewed as
an aggregate of spatial components. When aggregating data by re-
gions, both sparse and dense population regions can create confus-
ing mappings. Aggregation over sparsely populated regions may
result in visualizations that show the area as having a high con-
centration of patients with a certain syndrome, while aggregation
over a densely populated region may lose specificity as the signal
is drowned in noise. As such, we have created a suite of visual an-
alytic tools which can be used to view aggregate syndromic data in
terms of their spatial and temporal contexts. Our system provides a
kernel density estimate of spatially distributed syndromic data, cre-
ating a color map of the estimated percentage of the population with
a specified syndrome. In order to map this distribution to a context
an epidemiologist desires, we provide both automatic and interac-
tive range adjustment tools which allows users to adjust the data
color-mapping into their model assumptions for what is abnormal
in a given syndrome. Our tool set also includes hotspot selection
in which users may further refine their color range selection to look
for peaks within the hotspots. Furthermore, our selection tool also
provides direct links to time series views of the data, providing a
historical context for the data. Such tools allow epidemiologists
to quickly understand the context in which data is being presented
thereby improving their ability to form and test complex hypothe-
ses.

1 MOTIVATION

Recently, the detection of adverse health events has focused on
pre-diagnosis information to improve response time. This type of
detection is more largely termed syndromic surveillance and in-
volves the collection and analysis of statistical health trend data,
most notably symptoms reported by individuals seeking care in
emergency departments. Currently, the Indiana State Department
of Health (ISDH) employs a state syndromic surveillance sys-
tem called PHESS (Public Health Emergency Surveillance System)
[5], which receives electronically transmitted patient data (in the
form of emergency department chief complaints) from 73 hospi-
tals around the state at an average rate of 7000 records per day.
These complaints are then classified into nine categories (respira-
tory, gastro-intestinal, hemorrhagic, rash, fever, neurological, bo-
tulinic, shock/coma, and other) [2] and used as indicators to detect
public health emergencies before such an event is confirmed by di-
agnoses or overt activity.

The work presented in this paper focuses on advanced interactive
visualization and analysis methods for contextualizing hotspots. A
screen shot of this system is shown in Figure 1. The left portion
of the screen represents the interactive database querying tools. We
include checkboxes for classified syndromes, keyword searches for

Figure 1: A screen shot of the visual analytics system.

chief complaint text, and demographic filtering for age and gen-
der. The main viewing area is a geo-spatial temporal view that has
pan and zoom controls in the upper left corner. Hospitals and re-
gions of the map may be selected with a circular query tool for
interactive time series generation. The rightmost windows are the
temporal views, showing selected time series plots. Users may se-
lect points or regions of time to interactively manipulate the geo-
spatial temporal window. Finally, a time slider is included on the
bottom portion of the screen, allowing users to move through time
on all unlocked screens. We apply statistical modeling techniques
to estimate syndrome distributions in the spatial realm. Spatially
located syndromic hotspots can be selected and immediately ana-
lyzed in the corresponding linked temporal view. Further, through
a data aggregation method, patient distributions can be overlaid on
the density distribution to provide hints as to which areas should
be further explored, and which areas may simply be false positives.
Concurrently, user’s may also interactively explore the data ranges
through color mapping tools in order to explore the varying dimen-
sionalities of the hotspot under analysis. Such tools allow users to
quickly form and test hypotheses, thereby reducing the time needed
to reject false positives and confirm true outbreaks.

To summarize, novel system features include:

• A new kernel density estimation that works for both urban and
rural populations

• Dually linked interactive displays for multi-domain/multi-
variate exploration and analysis

• Novel data aggregation for effective visualization and privacy
preservation

• Interactive color mapping tools for enhanced data contextual-
ization

• Region selection tools for analyzing area specific hotspots



Figure 2: Data aggregation and privacy preservation visualized as a percentage of syndromic population over the total population seen. (Left)
Data aggregated by county. (Middle) Data aggregated through nearest neighbor groupings. (Right) A combination of data aggregation to
enhance contextual visualization.

2 PREVIOUS WORK

Data from public health surveillance systems has long been recog-
nized as providing meaningful measures for disease risks in popu-
lations [7, 11]. As such, many disease modeling packages, outbreak
alert algorithms and data exploration systems have been developed
to aid epidemiologists in identifying outbreaks within their data.
Some of the most popular of these systems are the Early Aber-
ration Reporting System (EARS) [6], the Electronic Surveillance
System for the Early Notification of Community based Epidemics
ESSENCE [8], and Biosense [9]. Unfortunately, all of these sys-
tems offer limited data exploration tools and little-to-no interactive
geospatial support. Furthermore, many detection algorithms em-
ployed by these systems generate a large amount of false positives
for epidemiologists to analyze. While creating algorithms to reduce
false positives is important, our work focuses on creating advanced
visual analytics tools for more efficiently exploring these alerts and
hypotheses.

Many of these previous systems provided useful visualization
and exploration of data, but did not support interactive analysis. To
address this gap, visual analytics has emerged as a relatively new
field formed at the intersection of analytical reasoning and interac-
tive visual interfaces [12]. It is primarily concerned with presenting
large amounts of information in a comprehensive and interactive
manner. By doing so, it is hoped that the end user will be able to
quickly assess important data and, if required, investigate points of
interest in detail. The branch of visual analytics with which we are
most concerned for this paper is that of geospatial and temporal an-
alytics, which applies the concepts of visual analytics to problems
rooted in space and time.

3 HOTSPOTS IN CONTEXT

The healthcare data provided by PHESS contains a set of observa-
tions in which an individual from location Xi arrives at time t to
a hospital and is diagnosed with a particular syndrome. Such data
is often aggregated by county or zip code and then shown to the
user. This type of aggregation can be thought of as a histogram
or box-plot of the data, and while a spatial histogram can be use-
ful, such a visualization does not provide any hints as to what may
be occurring in areas with little to no patient visits. Furthermore,
areas with a small number of patients may stray towards a high per-
centage of the population seen reporting the syndrome in question.
In those cases, visual alerts may be triggered that would clearly ap-
pear as false positives once the individual records were analyzed. In
Figure 2 (Left) we present a a geospatial heatmap [4] view which

employs a diverging color map [1] to represent the percentage of
a given syndrome over the total patients seen on a given day. No-
tice that many counties seem to be visually displaying an extremely
high level of respiratory syndromes; however, without other spa-
tial or temporal contextual information it is difficult to ascertain if
these areas should be investigated or if instead they should be disre-
garded as false positives. In this section we present several methods
for contextualizing the data to enhance hypothesis generation and
testing for syndromic surveillance.

3.1 Data Aggregation and Privacy Preservation
Along with aggregation by county, we also employ a data aggrega-
tion method which clusters patient location by their nearest neigh-
bors. Our data aggregation method finds sets of patient locations
where each member is at most a set distance from at least one other
member. The group is then represented by a circle at the set’s ge-
ographic center that has an area proportionate to the size of the
set. This allows us to successfully aggregate data around major
cities while preserving the autonomy of smaller sets in rural areas.
This method is derived from the idea of connected components in
graph theory, where patients are connected if and only if they are
within the threshold distance from another patient in the graph [3].
The generated circles are then colored using the same divergent col-
ormap [1] as the counties where the color represents the percent of
patients with a given syndrome found within this geographical cen-
troid, see Figure 2. This method operates under the assumption that
the data is clumped in certain locations, otherwise it is possible to
have an aggregation that hides too much of the actual data. Further-
more, as this method groups data at its geographic center of mass,
it preserves the data context and helps alleviate privacy concerns.

Notice that when the data is aggregated by county, several coun-
ties immediately stand out to the user, indicating that these areas
warrant investigation. However, by overlaying the data aggregated
circles on the county level aggregation, we are able to represent a
larger set of contextual information. In (Figure 2 (Right) we can
now see that the counties showing high levels of respiratory syn-
dromes have such a sparse distribution of patients that no aggre-
gation levels were displayed on the map. As such, one may begin
hypothesizing that these counties are merely representing false pos-
itives. Unfortunately, in the case of small and sparse populations,
such levels of data aggregation often fail to represent the vital in-
formation needed. Furthermore, users could also begin looking for
counties that show low levels of syndrome where their aggregate
shows high levels, indicating that there is a conflict of information
that needs to be further investigated.



Figure 3: Kernel density estimate heatmaps visualized as a percentage of syndromic population over the total population seen. (Left) KDE
heatmap. (Middle-Left) Contextualizing the KDE heatmap by overlaying patient data aggregated through nearest neighbor groupings. (Middle-
Right) A zoomed in view of a local hotspot. (Right) Contextualizing a hotspot through interactive coloring.

3.2 Heatmaps
While such data aggregation can be useful for an overall view of
patient distribution, it is also useful to model the population distri-
bution across the state in order to approximate trends where little
or no data values exist. To accomplish this, we employ the use of
a variable kernel density estimation method [10], Equation 1. This
estimate scales the parameter of the estimation by allowing the ker-
nel scale to vary based upon the distance from Xi to the kth nearest
neighbor in the set comprising N−1 points. We calculate both the
density estimation for the ill patients as well as the density estima-
tion of all patients that visited a hospital in our system using an
appropriately chosen k for each data set. Density estimation is done
only in two dimensions for the given time period aggregation. The
density estimation for the ill patients is then divided by the density
estimation for the total patients to provide a percentage count for
the expected number ill of the population.
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Here, N is the total number of samples and the function 1(||u||≤1)
evaluates to 1 if the inequality is true and zero for all other cases.

The window width of the kernel placed on the point Xi is pro-
portional to di,k (where di,k is the distance from the ith sample to
the kth nearest neighbor) so that data points in regions where the
data is sparse will have flatter kernels. Unfortunately, our data set
exhibits problems with this method. In health care data, a primary
recipient of emergency care are patients of long-term health care
facilities (for example, nursing homes). As such, the use of the k
nearest neighbors may result in a di,k of 1 as many patients visiting
emergency rooms may report the same address. This concept can be
extended to large apartment complexes, as well as data uncertainty
(for example, many hospitals report unknown patient addresses as
the hospital address). To overcome these issues, we slightly modify
the variable kernel estimation to force it to have a minimum fixed
bandwidth of h as shown in Equation 3.
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Here, h represents the multi-dimensional smoothing parameter. In
the case of our modified variable kernel estimation, we calculate
the kernel only spatially as opposed to both spatially and tempo-
rally. Future work will include extending our modified density esti-
mation into the temporal domain. Results from our variable kernel

estimation can be seen in Figure 3. Slight problems in the estima-
tion can be found near the state borders due to the abrupt cut of data
in those areas. Future work will address these issues through more
advanced spatial modeling.

3.3 Context Through Color Exploration

Of key importance in all the previously presented data aggregation
methods is the choice of coloring. In coloring our maps, data ranges
get binned to a certain color. Clearly, the choice of bins can be
based on model assumptions of the expected percentage of syn-
dromic patients within an area. However, each syndrome will have
varying model assumptions. Furthermore, the distribution of the
data can also play a key role in placing syndromic hotspots into
the proper context. For example, if the data is binned such that the
maximum value covers a large range of variation, it is possible that
such a mapping could hide hotspots within hotspots.

As such, we have created an interactive color widget for explor-
ing data ranges. This widget allows users to modify the color scale
either interactively or through a set of mathematical binning func-
tions. We provide functions for linear, ramp, exponential and loga-
rithmic binning.

In linear binning, the points on the map are first binned across a
large histogram. The histogram is then divided such that each color
represents an equal number of points within the data. For ramp
binning, the histogram is divided such that each color represents an
increasingly larger number of points, following along the curve y =
x. This idea is then extended for both exponential and logarithmic
curves. Future work will include binning the data to a Gaussian
distribution.

In Figure 3, the data has been mapped using a logarithmic bin-
ning. Both the data aggregation and the kernel density estimation
tools can be used in conjunction for contextualizing hotspots. Here,
we find several hotspots in the state. When placed in the context
of the data aggregation overlay (Figure 3 (Middle-Left)), we begin
to develop hypotheses of key places that need further exploration.
These places are marked by the black squares in Figure 3 (Middle-
Left).

Further, we see the dense hotspot centered in the middle of the
state. To further explore this hotspot, user’s may zoom into the
map. The zoom results in a re-calculation of the kernel density
estimate as the latitude/longitude point space mapping to the grid
changes. Figure 3 (Middle-Right) provides a zoomed in view of the
state’s central hotspot. Notice that this heatmap is dominated by
the a singular range of red. In Figure 3 (Right) the user interactively
adjusts the color scale to provide more binning across that particular
data range. Through this interaction, the user is now able to find
several previously undetectable peaks within this region that may
warrant further investigation.



Figure 4: Contextualizing a hotspot by its temporal history. Here, a user has selected an area (the green circle) and the temporal history of that
spatial region is displayed in the graph.

3.4 Temporal Context

The previous tools focus on viewing data in a spatial context; how-
ever, syndromic surveillance data is directly keyed to temporal as-
pects as well. To present relevant linked spatio-temporal context,
our system allows user highlighting in the geospatial view through
a circular selection of an area. This circular selection allows users
to select multiple geographic regions and view their temporal his-
tory. In Figure 4, we see a heat map of the state. In this figure, note
that the circled area represents a user selection. Here, the user has
chosen a region of the state that appears to currently be a syndromic
hotspot. A linked time series analysis view plots the data from that
area in the lower right window. Future work will allow the selection
of arbitrarily shaped hotspots based on the kernel density estimation
shape.

4 CONCLUSIONS AND FUTURE WORK

Our current work demonstrates the benefits of visual analytics
for contextualizing syndromic hotspots. By linking a variety of
data sources and models, we are able to enhance the hypothesis
generation and exploration abilities of our state epidemiologists.
Our initial results show the benefits of multiple overlays of simi-
lar data, linking traditional time-series epidemiological views with
geo-spatiotemporal views, and interactive color maps for explo-
ration and data analysis. Our system also moves away from tradi-
tional spatial histogram visualizations, providing a finer granularity
of heatmap for more accurate syndromic detection.

Other future work includes advanced modeling of geo-
spatiotemporal data for enhanced data exploration and hotspot de-
tection. Furthermore, we plan to include a suite of aberration detec-
tion algorithms and their corresponding control charts for enhanced
alert detection in the temporal domain. We also plan on employing
spatiotemporal clustering algorithms for syndromic event detection
as well as correlative analysis views within the temporal domain.
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