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INTRODUCTION 
 
The AMOEBA procedure, or A Multidirectional Optimum Ecotope-Based Algorithm, as 
developed by Aldstadt and Getis (2006) is designed to identify hot and cold spots in mapped data 
by assessing the spatial association of a mapped unit to surrounding units.  Because of its 
emphasis on statistically significant hot and cold spots, AMOEBA was not designed to 
exhaustively assign all units to clusters.  In the work discussed here, we develop an AMOEBA 
procedure that is able to assign all units to spatial clusters of similar characteristics and create 
useful visualizations of the results.  This version of AMOEBA includes additions to the original 
algorithm that are designed to define and control cluster size, and is relevant for a variety of 
applications where visualizations of reasonably homogenous sub-regions are required.  We 
demonstrate our procedure using data from the 2000 Ghana Census to identify social 
neighborhoods in Accra, Ghana. 
 
VISUALIZING AMOEBA 
 
AMOEBA is able to map clusters of high and low values by creating a spatial weights matrix 
based on the Getis-Ord Gi* (Ord and Getis, 1995), or any other local statistic.  The algorithm 
develops a cluster from a selected seed location by evaluating Gi* values of all locations 
surrounding the seed.  If the neighbor increases the Gi* value, it is included into the forming 
cluster; if it does not increase the Gi* value, it is excluded.  By placing a cluster seed in every 
location, AMOEBA becomes exhaustive.  Yet, if the purpose is to assign each unit to a cluster, 
not only to hot and cold spots, this results in significant cluster overlap as each seed is allowed to 
grow into locations that belong to earlier clusters. 
 
With the overlapping of clusters, new avenues for visualization of clusters must be applied.  This 
version of AMOEBA outputs a number of statistics for each observation including the Gi*max 
value, which is the largest Gi* value of all the clusters that include the observation. When 



mapped, the Gi*max statistic provides a picture of contrast in spatial autocorrelation, and by 
visually merging adjacent clusters with similar Gi* values it provides boundaries for clusters.  
An example of mapped AMOEBA Gi*max values is displayed in Figure 1.  This figure is 
derived from running AMOEBA on the first principle component of four variables; three 
socioeconomic (SES) variables, and one slum variable.  These variables are taken from the 2000 
Ghana Census for 1,717 enumeration areas (EAs) in Accra, Ghana.  The resulting Gi*max values 
displayed in Figure 1 are divided into five value ranges, with high absolute values of Gi*max 
indicating high spatial autocorrelation.  In this figure, negative values indicate spatial 
autocorrelation of individuals working in the professional workforce, and positive values indicate 
spatial autocorrelation of individuals with low literacy, high rates of working in the informal 
sector, and high percentages of people living in slum like housing. 
 
Visualization of clusters is highly controlled by the divisions of Gi*max values.  Clusters in 
Figure 1 are relatively large, and might be broken down if Gi*max is divided into more value 
ranges.  But areas with extreme autocorrelation will have the same, or very similar, Gi*max 
values precluding the possibility of breaking these clusters up in the visualization process.  For 
example, in Figure 1 all observations in the white cluster running down the center of Accra have 
a Gi*max value of -19.64.  This cluster boundary is defined by Gi*max, and cannot be 
manipulated. 
 

 
 

Fig. 1:  AMOEBA Gi*max of first principle component of SES and slum.  
 
 



CONTROLLING CLUSTER SIZE 
 
As demonstrated in Figure 1, in cases of extreme autocorrelation, Gi*max is able to delineate an 
exact cluster boundary.  But there may be circumstances where more flexibility in visualization 
is desired.  For example, if the goal is to create spatially agglomerated areas from EAs, such as 
neighborhoods, some areas in Figure 1 would be too large to be realistic neighborhoods.  In this 
case user control of cluster size is desirable.  Kulldorff et al. (1998) limit cluster size by 
population, while Tango and Takahashi’s (2005) allows the analyst to limit number of units in a 
cluster.  Two similar features are introduced in AMOEBA:  the first gives control over the 
maximum number of observations in a cluster.  The second allows the analyst to place a 
threshold on a variable of choice such as area or population, where the cluster cannot exceed the 
sum of the selected variable.  Figure 2 demonstrates AMOEBA Gi*max values with an 
observation limit of 25 EAs, and an area threshold of the sum of the two largest EAs in Accra.  It 
is immediately noticeable that the white cluster down the center of Accra from Figure 1 is broken 
down into many smaller clusters, creating more feasible neighborhood sizes.  
 
 With these new additions to the original AMOEBA procedure, all observations are included into 
clusters allowing visualization of autocorrelation over an entire area.  By introducing limitations 
on cluster growth, further flexibility in cluster visualization is achieved as more options are 
available to the user. 
 

 
Fig. 2: AMOEBA Gi*max values for SES and slum; EA and area thresholds introduced.   
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