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Abstract Visual analytics techniques support the process of data analysis, reason-
ing, and knowledge building performed by a human analyst. The techniques combine
interactive, human-controllable visual displays with interactive operations for data
querying and filtering, data transformations, calculation of derived data, and appli-
cation of computational techniques for analysis and modelling. We demonstrate the
use of visual analytics techniques and procedures for analyzing Automatic Identifi-
cation System (AIS) data. We begin with showing how visual analytics approaches
can help in exploring properties of the data, detecting problems, and finding ways
to clean and improve the data. Then we describe two analysis scenarios focusing on
the events of vessel stopping and on the vessel traffic through the strait between the
bay of Brest, France, and the outer sea. Thereby we show how different techniques
are applied and combined.

1 Introduction

Human reasoning plays a crucial role in data analysis and problem solving. Bymeans
of reasoning, humans build and/or update knowledge in their mind. The knowledge
includes understanding of data and understanding of the phenomena reflected in the
data. Reasoning requires conveying information to the human’s mind, and visual rep-
resentations are best suited for this. Visual analytics, which is defined as “the science
of analytical reasoning facilitated by interactive visual interfaces” [18, p.4], devel-
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ops approaches combining visualizations, interactive operations, and computational
processing to support human analytical reasoning and knowledge building.

In this chapter, we demonstrate examples of using visual analytics approaches
for exploration and analysis of Automatic Identification System (AIS) data [8]. Our
example dataset consists of trajectories of vessels that moved between the bay of
Brest, France, and the outer sea [14]. We first investigate the properties of the data
and then focus on revealing and understanding patterns of vessel movements. The
example analysis task is to study when, where, and for how long the vessels were
stopping and to understand whether the events of stopping may indicate waiting for
an opportunity to enter or exit the bay (through a narrow strait) or the port of Brest.

2 Exploration of the data properties

Knowing properties of the data that need to be analyzed is essential for performing
valid analysis and drawing valid conclusions. Hence, before focusing on the primary
analysis goal, it is necessary to explore the data for gaining understanding of their
properties, identifying quality problems, and finding ways to solve or mitigate them.
Possible quality problems in movement data [3, 17] include, apart from errors in
spatial positions of objects and missing records for long time intervals, gaps in
spatio-temporal coverage, low temporal and/or spatial resolution, use of the same
identifiers for multiple objects, and others.

To explore the properties of the data we are going to analyze, we use aggregated
representations of original and derived attributes. Thus, a frequency histogram of
the lengths of the temporal spaces between consecutive records [17] shows us that
the most frequent spacing is around 10 seconds, and smaller intervals also occurred
quite frequently. Smaller peaks around 20, 30, 40, 60, 180, and 360 seconds cor-
responds to the required frequencies of position reporting depending on the vessel
status (moving or stationary), movement speed, type of the vessel, and positioning
equipment. Longer gaps between recorded positions may correspond to equipment
malfunctioning or being off, or to periods when the vessels were out of the area
covered by the data.

When trajectories are represented by lines on a map (Fig. 1, top), long straight
line segments can be noticed. Most of these segments correspond to spatio-temporal
gaps in the trajectories, i.e., absence of recorded vessel positions during long time
intervals. Hence, such segments must be excluded when it is necessary to analyze
the paths of the vessels or to aggregate the trajectories into overall traffic flows;
otherwise, the results will be wrong and misleading. A suitable way to exclude
spatio-temporal gaps is to divide the trajectories by these gaps: the point preceding a
gap is treated as the end of the previous trajectory, and the following point is treated
as the beginning of the next trajectory. A gap is defined by choosing appropriate
thresholds for the spatial and temporal distances between consecutive trajectory
points. Suitable thresholds are chosen based on the statistics of the distances in the
data. Thus, for the data presented in Fig. 1, 78.6% of the spatial distances are below
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Fig. 1 Top: Long straight line segments in trajectories correspond to spatio-temporal gaps, i.e.,
long time intervals in which position records for the vessels are missing. Bottom: The result of
dividing the trajectories by the spatio-temporal gaps in which the spatial distance exceeded 2 km
and the time interval length exceeded 30 minutes.

10 meters, 12.1% are from 10 to 50 m, and 6.4% from 50 to 100 m. Only 0.5% of the
distances exceed 250 m, 0.2% exceed 500 m, 0.12% are over 1 km, and 0.06% are
over 2 km. Hence, a suitable spatial threshold may be from 0.25 to 2 km, depending
on the intended spatial scale of the analysis. Only 0.4% of the temporal differences
exceed 10 minutes, 0.22% exceed 20 minutes, and 0.19% exceed 30 minutes. Taking
the spatial threshold of 2 km and temporal threshold of 30 minutes defines 1,852
spatio-temporal gaps in the data, which is 0.018% of the total number 10,446,156
of the available position records for the territory shown in Fig. 1. The image at the
bottom of Fig. 1 shows the result of dividing the trajectories by these gaps. From the
original 392 trajectories, the division produced 8,227 trajectories.

As any real data, the data we need to analyze have quite many errors, particularly,
wrong positions. Some of these errors, such as positions on the land far from the
sea, are very easy to spot visually (Fig. 2). In the trajectories presented in Fig. 1,
such obvious errors have been already cleaned. Other positioning errors may be
more difficult to detect, especially in a large dataset. A good indication of a recorded
position being out of the actual path of a vessel is an unrealistically high value
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Fig. 2 Some trajectories include positions located on land far from the sea.

of the computed speed in the previous position. The speed is computed as the
ratio between the distance to the next position and the length of the time interval
between the positions. The computed speed may differ from the measured speed,
which is recorded in the data. In the data shown in Fig. 1, the maximal recorded
value of the measured speed is 102.2 knots (189.2744 km/h) and most of the values
(88.5%) are below 36 knots (66.67 km/h), whereas the computed speed values
reach as high as 31626 km/h. There are about 4000 points (0.1% of all) with the
computed speed values exceeding 200 km/h (about 108 knots). Among these 4000
points, the median being 5161 and the lower and upper quartiles being 2432 and
9863, respectively. These values undoubtedly indicate positioning errors in the data
records. Occasionally occurring singular outlying positions are easy to identify and
exclude from the trajectories; however, there may be more difficult cases. It is useful
to have a close look at trajectories containing many points with extremely high speed
values.

Fig. 3 A trajectory with an extremely high number of outlying points.
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Fig. 4 Detailed investigation of the periods with high numbers of positioning errors.

An example of a trajectory containing extremely many points with very high
values of computed speed is shown in Fig. 3. The trajectory has a very long duration
– 6 months. By looking at the map only, it is hard to understand what is shown.
It is useful to look at this trajectory in a space-time cube (STC), which is a three-
dimensional displayswith two dimensions in the cube base representing space and the
third, vertical dimension representing time. The STC on the right of Fig. 3 shows that
there were a few short periods during this time in which the trajectory looks strange.
In Fig. 4, the appearance of the trajectory in two such periods is shown in more detail
on maps (upper images) and in STC views (lower images). The images indicate
that correctly recorded positions alternate with erroneous recording. Moreover, the
wrong positions seem to be displaced with respect to the correct positions in a
systematic manner rather than randomly. In the part of the trajectory shown on the
upper and lower left, the displacements occurred with varying temporal frequency,
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while the directions and distances of the displacements were similar. The part of the
trajectory shown on the upper and lower right has a much more complicated shape.
The displacement distances increase and decrease in a periodic manner, while the
angles change gradually. Such a pattern may mean that two or more simultaneously
moving vessels might refer to the same vessel identifier in reporting their positions.
Arranging positions of different vessels in a single trajectory results in an unrealistic
path shape and extremely high values of the computed speed in the points due to
high distances between consecutive points. Still, it is not unlikely that the strange
shape in our case emerged due to malfunctioning of the positioning device.

If such errors may have an impact on the subsequent analysis (e.g., in analyzing
paths or flows), it is reasonable to try to exclude the trajectory fragments with high
numbers of errors, or even the whole trajectories. However, it is quite difficult to
exclude in an automatic way frequently occurring shifts, as in Fig. 4, left, or to
separate movements of different vessels, as in Fig. 4, right.

Fig. 5 Fragments of trajectories with wrongly reported navigation status. The reported status in
the upper left and bottom images is “at anchor”, whereas the vessels were actually moving. On the
upper right, the reported status is “under way using engine”, while the vessels remained at the same
places and should have reported “at anchor”.

Errors may occur not only in positions but also in attribute values associated with
the positions. For our intended study, the values of the attribute ‘navigational status’
are relevant. Particularly, the value 1 means “at anchor”, which may help us to find
the anchoring events, and the value 7 means “engaged in fishing”, which may help
us to exclude the trajectories of fishing boats from our analysis. We want to exclude
the fishing boats because we expect their movement behaviors to be quite different
from those of the vessels purposefully travelling from a certain origin to a certain
destination and not performing any activities on the way. Thus, we can expect that
anchoring of fishing boats may be related to their fishing activities rather than with
a busy traffic situation or crowded port area.
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While the attribute reporting the navigational status is of high interest to us, it
turns out that its values may be unreliable. Figure 5 demonstrates a few examples
of wrongly reported navigational statuses. The upper left image shows a selection
of points from multiple trajectories in which the navigational status equals 1, i.e.,
“at anchor”. It is well visible that the selection includes not only stationary points
but also point sequences arranged in long traces, which means that the vessels were
moving rather than anchoring. On the opposite, the upper right image demonstrates
several trajectory fragments that look like hairballs. Such shapes are typical for stops,
when the position of a moving object does not change but the tracking device reports
each time a slightly differing position due to unavoidable errors in the measurements.
The locations of the hairballs also signify that the vessels were at anchor or moored
at the shore. However, the recorded navigational status is 0, which means “under
way using engine”. The lower image shows trajectory fragments of several vessels.
The character of their movements (back and forth repeated multiple times) indicates
that they were fishing, i.e., the navigational status should be 7, but the value attached
to the positions is 0, i.e., “under way using engine”.

Hence, in our study, we should not fully rely on the attribute values, and should
also find ways to mitigate the possible impacts of the other errors we have detected.

3 Transformations of movement data

In the following analysis, we apply multiple transformations of the data. Movement
data can be considered from several complementary perspectives [1]: trajectories,
spatial events, dynamically changing situations over a territory, variation of presence
of moving objects in selected places, or aggregated movements (flows) between
places. For example, a sequence of positions of a vessel can be treated as its trajectory.
An anchorage with its spatial position and temporal interval is an event. A situation
can represent a spatial distribution of vessels at a given time or movement flows of
vessels over a time interval. These diverse perspectives are supported by techniques
for transformations between different possible representations of movement data, as
illustrated Fig. 6.

The transformation scheme can be explained as follows. Typically, movement
data are originally available as collections of records specifying spatial positions
of moving objects (e.g. vessels) at different times. Such records describe events of
presence (or appearance) of the moving objects at certain locations and specify the
times when these events occurred. When all records referring to the same moving
object are put in a chronological sequence, they together describe a trajectory of
this object. Hence, trajectories are obtained by integrating spatial events of object
appearance at specific locations. The trajectories can be again disintegrated to the
component events. Particular events of interest, such as stops or zigzaggedmovement,
can be detected in trajectories and extracted from them. A trajectory describing
movements of an object during a long time period can be divided into shorter
trajectories, for example, representing different trips of the object.
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Transformations of spatio-temporal data
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Fig. 6 Different representations of movement data and transformations between them (source: [1]).

Having divided the space into compartments (shortly, places) and time into in-
tervals, it is possible to aggregate either spatial events or trajectories by places and
time intervals. Place-based aggregation involves counting for each pair of place and
time interval (1) the events that occurred in this place during this interval, or (2) the
number of visits of this place by moving objects and the number of distinct objects
that visited this place or stayed in it during the interval. Additionally, various sum-
mary statistics of the events or visits can be calculated, for example, the average or
total duration of the events or visits. The result of this operation is time series of the
aggregated counts (e.g. counts of stops or counts of distinct visitors) and statistical
summaries associated with the places.

Link-based aggregation summarizes movements (transitions) between places and,
thus, can be applied to trajectories. For each combination of two places and a time
interval, the number of times when any object moved from the first to the second
place during this interval and the number of the objects that moved are counted.
Additionally, summary statistics of the transitions can be computed, such as the
average speed or the duration of the transitions. The result of this operation is time
series of the counts and statistical summaries associated with the pairs of places.
The time series characterize links between the places; therefore, they can be called
link-based. The term “link between place A and place B” refers to the existence of
at least one transition from A to B.

Both place-based and link-based time series can be viewed in two complementary
ways: as spatially distributed local time series (i.e., each time series refers to one
place) and as temporal sequence of spatial situations, where each situation is a
particular distribution of the counts and summaries over the set of places or the set
of links. These perspectives require different methods of visualisation and analysis.
Thus, the first perspective focuses on the places or links, and the analyst compares
the respective temporal variations of the attribute values such as counts of distinct
vessels in ports over days. The second perspective focuses on the time intervals, and
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the analyst compares the respective spatial distributions of the values associated with
the places or links.

4 Detection and analysis of the anchoring events

The goal of our analysis is to investigate when, where, and for how long the vessels
were stopping and to understand whether the stops may indicate waiting for an
opportunity to enter or exit the bay of Brest through a narrow strait or the port of
Brest. If many stops might have happened due to waiting, it may mean that the
management of the traffic through the straight or the port services is sub-optimal and
requires improvement.

4.1 Data selection and preparation

For our study, we selected the trajectories of the vessels that passed the strait con-
necting the bay of Brest to the outer sea at least once. We excluded the vessels that
had, at some point, the navigational status 7, i.e., “engaged in fishing”, for the reasons
explained at the end of Section 2. We also excluded the vessels that never (during
the time period covered by the data) had the navigational status 0, i.e., “under way
using engine”. The resulting selection consists of trajectories of 346 vessels.

From these trajectories, we selected only the points located inside the bay of
Brest, in the strait, and in the area extending to about 20 km west of the strait. The
shapes of the resulting trajectories are shown in Fig. 1. As we explained previously
(Section 2), the long straight line segments correspond to periods of position absence.
To exclude these segments, we divided the trajectories into sub-trajectories by the
spatio-temporal gaps with distance thresholds 2 km in space and 30 minutes in time.
This means the following: if there is a trajectory point such that its distance to the
next point exceeds 2 km and the time difference exceeds 30 minutes, the trajectory
is divided into two smaller trajectories. The first point is taken as the end of the first
trajectory, and the next point is taken as the beginning of the second trajectory. The
division gave us 6,346 smaller trajectories. To clean these trajectories from outliers,
we removed the points whose distances from the previous and next points were more
than 2 km. We further divided the trajectories by stops (segments with low speed)
within the Brest port area and selected from the resulting trajectories only those that
passed through the strait and had duration at least 15 minutes. As a result of these
selections and transformations, we obtained 1,718 trajectories for further analysis.
Of these trajectories, 945 came into the bay from the outer area, 914 moved from the
bay out, and 141 trajectories include incoming and outgoing parts.
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4.2 Detection and extraction of anchoring events

Our study aims at the detection of anchoring events in the trajectories. As explained
in Section 2, we cannot rely on the values of the attribute ‘navigational status’,
because they may be wrong. Assuming that, despite the errors we detected (Fig. 5),
many vessels reported their anchoring correctly, we take the following approach. We
extract from the database all trajectory points where the navigation status equals 1
(i.e., “at anchor”) and the speed over ground is less than 2 knots. The extracted points
are represented in Fig. 7 by purple circles drawn with a high level of transparency
(90%). The circle symbols appear dark and thick where the points are clustered in
space. We define 11 anchorage areas relevant to our study by creating buffer zones
around the point clusters, excluding the clusters on the main traffic lanes (these
clusters consist of points of singular vessels and may thus result from errors in data
or indicate abnormal situations), within the port or attached to the shore. The zones,
labelled by numbers from 1 to 11, are shown in Fig. 7.

Fig. 7 Delineation of anchoring zones.

Having defined the anchorage zones, we marked the points of the trajectories as
probable anchoring if, first, they belong to one of the zones and, second, have the
speed over ground below 2 knots. There are 158 trajectories that contain points sat-
isfying these conditions. Pitsikalis et al. [13] describe another approach to detecting
anchoring events, which can be used for online detection of such events, while the
analysis described in this chapter is performed offline.

Figure 8, top, shows the previously selected set of 1,718 selected trajectories.
The segments corresponding to probable anchoring are colored in red. The lower
left image shows the shapes of the trajectory segments corresponding to probable
anchoring in more detail. In the lower right, only those 158 trajectories that contain
probable anchoring events are shown in an STC view. The trajectories have been
aligned in time by putting together their starting times. Such transformation of the
absolute time references to relative makes the segments corresponding to probable
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Fig. 8 The trajectories selected for analysis with the segments corresponding to probable anchoring
marked in red. The lower left image shows an enlarged map fragment in more detail, and the STC
on the right shows only the trajectories that contain probable anchoring; the trajectories have been
temporally aligned.

anchoring better visible (they appear as vertical lines in the cube) and their duration
(which is represented by the lengths of the vertical lines) easier to compare.

We extract the probable anchoring events (i.e., the segments identified as probable
anchoring) from the trajectories to a separate dataset. We obtained 327 events in total
with the duration ranging from 1 minute to 130.5 hours. We deem it unlikely that a
vessel would actually stay at anchor for a very short time, since the anchoring and
unanchoring procedures are not instantaneous. So, we want to exclude unrealistically
short events. To determine the minimal realistic duration, we find the shortest event
that included points with the reported navigational status 1, i.e., “at anchor”. Its
duration was slightly less than 6 minutes. This gives us a ground to assume that
the events shorter than 5 minutes may not correspond to real staying at anchor.
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After filtering these events out, we obtain 212 events with the median duration 134
minutes and the lower and upper quartiles being 18 minutes and 896 minutes (14.9
hours), respectively. These events happened in 126 trajectories (7.33% of the 1,718
trajectories under study).

4.3 Exploration of the anchoring events in relation to strait passing

Since we want to know how the anchoring events are related to passing the strait
between the bay and the outer sea, we find the part corresponding to strait passing
in each trajectory. Figure 9, left, demonstrates how they have been identified. We
outlined interactively the area of the strait.We applied a spatial computation operation
that determined for each trajectory point whether it lies inside the outlined area. The
parts of the trajectories lying within the strait area are marked in a darker grey shade
in Fig. 9, top left. These parts of the trajectories will be further referred to as strait
passing events. The duration of these events ranges between 7.8 and 88 minutes, the
median being 16.7 minutes.

For each event of strait passing, we identified the direction of the vessel move-
ment by means of spatial queries involving the pair of interactively defined areas
corresponding to the outer and inner sides of the strait; see Fig. 9, right (the areas
are painted in light green). The trajectory fragments that passed first the outer side
and then the inner side received the label ‘inward’ (colored in red in Fig. 9, top
right), and the fragments that passed the areas in the opposite order were labelled as
‘outward’ (colored in blue on the bottom left). After performing this operation, we
detected a fragment that was not labelled. We inspected it separately and found that
it belongs to a vessel that entered the strait at the inner side but then returned back
into the bay. This fragment is colored in yellow in Fig. 9, bottom right. We labelled
this fragment ‘in2in’, which means “from inner area back to inner area”.

Next, we determined the temporal relationships of the stops to the strait passing
events of the same vessels. We used temporal queries to find for each stop the nearest
straight passing event of the same vessel that happened in the past and in the future
with respect to the time of the stop. Then we categorized the stops according to
the directions of the past and future straight passing; see the legend on the right of
Fig. 10. The most common category (105 stops) is ‘inward;none’, which means that
the anchoring took place after passing the strait in the inward direction and there was
no other strait passing after the anchoring, i.e., the vessels finally came in the port of
Brest. There were 36 ‘outward;inward’ stops, i.e., the vessels exited the bay through
the strait, anchored in the outer area, and then moved back into the bay. 34 stops
took place before entering the bay (‘none;inward’), 18 happened after exiting the bay
(‘outward;none’) and 11 before exiting the bay (‘none;outward’). In 7 cases, vessels
entered the bay from the outside, anchored, and then returned back without visiting
the port (‘inward;outward’), and there was one stop that happened after entering the
strait at the inner side and returning back (‘in2in;none’).
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Fig. 9 Top left: Finding the trajectory parts corresponding to strait passing. Remaining images:
Identifying the directions of the strait passing. Top right: inward, bottom left: outward, bottom
right: a vessel entered the strait from the bay and returned back before reaching the outer side of
the strait. This trajectory is labelled “in2in”.

The sizes of the pie charts in Fig. 10 are proportional to the total counts of the
stops in the respective zones; the largest chart corresponding to 70 events is located
inside the bay. The pie segments represent the proportions of the stops according to
the directions of the past and future strait passing. The stops that happened before
entering the bay and/or after exiting are located in the outer area, and the events that
happened after entering the bay and/or before exiting are located inside the bay.

We see that the majority of the events (yellow pie segments) happened after
entering the bay and, moreover, a large part of the stops that took place in the outer
area happened after exiting the bay and before re-entering it (orange pie segments).
It appears probable that the vessels stopped because they had to wait for being served
in the port. Most of them were waiting inside the bay but some had or preferred to
wait outside. Hence, the majority of the anchoring events can be related to waiting
for port services rather than to a difficult traffic situation in the strait.
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Fig. 10 The pie charts represent the counts of the stops in the anchoring zones categorized according
to the temporal relationships to the strait passing by the vessels. The largest pie area represents 70
stops (see the legend in the lower right corner).

4.4 Temporal distribution of the anchoring events

Apart from the spatial distribution, we look at the distribution of the stops over
time using two-dimensional histograms (Figs. 11 and 12) the dimensions of which
correspond to time components: hours of the day represented by the horizontal
dimension versus dates (Fig. 11), and days of the week (Fig. 12) represented by the
vertical dimension. The lengths of the dark gray bars are proportional to the numbers
of distinct anchoring vessels. The maximal bar length in Fig. 11 corresponds to 4
simultaneously anchoring vessels, which is quite few. The pattern of the distribution
by the dates and times of the day tells us that there were days when some vessels were
anchoring during the whole days but also many days when there were no anchoring
vessels at all or a few vessels anchoring for short times. We do not see any pattern
regarding busy and less busy hours. However, the histogram in Fig. 12 shows us
that the number of anchoring vessels tends to decrease starting from the morning
of Wednesday (the third row from the bottom of the histogram) till the morning of
Thursday (the fourth row), and then it starts increasing again. The weekend (two top
rows) andMonday (the bottom row) are the busiest days in terms of vessel anchoring.
We looked separately at the temporal distribution of the stops that happened after
entering the bay and before going to the port or before entering the bay and found
that the patterns observed in Figs. 11 and 12 are primarily made by these events,
which is not surprising since they are the most numerous. The accumulation of the
anchoring vessels by the weekend and gradual decrease of their number during the
weekdays supports our hypothesis that the stops may be related to the vessels waiting
for being served in the port.
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Fig. 11 The temporal distribution of the stops by the dates (rows of the matrix) and hours of the
day (columns of the matrix). The bar lengths in the matrix cells are proportional to the counts of
the anchored vessels; the maximal length represents 4 vessels.

4.5 Exploration of the anchoring events in the context of the
trajectories

Now we want to look at the movements of the vessels that made stops on their way.
We aggregate the vessel trajectories by a set of interactively defined areas, which
include the anchoring zones, the port area, the areas at the outer and inner ends of
the strait as shown in Fig. 9, right, and a few additional regions in the outer sea. The
aggregation connects the areas by vectors and computes for each vector the number
of moves that happened between its origin and destination areas. The result is shown
on a flow map, where the vectors are represented by flow symbols with the widths
proportional to the move counts. In our example (Fig. 13), the flow symbols are
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Fig. 12 The temporal distribution of the stops by the days of the week (rows of the matrix; 1
corresponds to Monday and 7 to Sunday) and hours of the day (columns of the matrix). The bar
heights in the matrix cells are proportional to the counts of the anchored vessels; the maximal
height represents 25 vessels.

curved lines with the curvature being lower at the vector origins and higher at the
destinations.

The aggregation we have applied to the trajectories is dynamic in the sense that
it reacts to changes of the filters that are applied to the trajectories. As soon as the
subset of trajectories selected by one or more filters changes, the counts of the moves
between the areas are automatically re-calculated, and the flow map representing
them is immediately updated. The six images in Fig. 13 represent different states of
the same map display corresponding to different query conditions. The upper left
image represents the 1592 trajectories (92.67% of all initially selected trajectories)
that did not include stops. This flowmap can be considered as showing uninterrupted
traffic to and from the port of Brest. The flows between any two areas look symmetric,
i.e., the lines have equal widths, which means approximately the same numbers of
moves in the two opposite directions.

The remaining images show the flows obtained from the trajectories that included
stops. The sizes of the red circles located in the anchoring zones are proportional
to the numbers of the stops in these zones. The upper right image represents all
126 trajectories that contained stops. Here, the flows are asymmetric, showing more
movements from the outside into the bay than from the bay. Please note that the
scales of the widths of the flow symbols differ among the images. The maximal
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Fig. 13 The trajectories under study are represented in an aggregated form on flow map. Top left:
trajectories without stops; top right: all 126 trajectories containing stops. The remaining images
represent subsets of the trajectories having stops after entering the bay (middle left), before entering
the bay (middle right), before exiting the bay (bottom left), and after exiting the bay (bottom right).

width, which is the same in all images, is proportional to the individual maximal
value attained in each image; see the legend in the lower right corner of each image.
Thus, the thickest line represents 858 moves on the top left, 104 moves on the top
right, 52 and 51 moves in the two images below, and 8 and 18 moves in the lower
two images.

The four images in the second and third rows in Fig. 13 represent different subsets
of the trajectories containing stops. The images in the second row represent the
trajectories that had stops after entering the bay (left, 52 trajectories) and before
entering the bay (right, 51 trajectories). Among the latter 51 trajectories, 30 began
in the port area, moved through the strait to the outside region, stopped mostly either
south of the strait entrance (21 trajectories) or northwest of it (6 trajectories), and
then re-entered the bay and moved again into the port. This behavior may mean that
the vessels were unloaded in the port and then moved to the outer area for waiting
until the loads for their next trips are prepared in the port.

The images in the third row represent the trajectories having stops before (left)
and after (right) exiting the bay, 8 and 18 trajectories, respectively. On the left,
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all 8 trajectories began in the port, 6 of them stopped south of the port and two
southwest of the port before going out through the strait. However, three out of these
8 trajectories moved back to the port soon after exiting the bay (they had no stops in
the outer area). This behavior may mean that the vessels were waiting for some port
services inside the bay and then were going to relocate but changed their intention,
perhaps, after being notified that the port is ready to serve them. The image on the
right shows that some vessels had stops outside of the bay before going to the outer
sea. These vessels, evidently, did not have to wait for port services and stopped for
some other reasons.

Concluding the exploration of the stops, we can summarize that most of them
are likely to have happened because the vessels had to wait for being served in the
port of Brest. The vessels coming from the outer sea were waiting mostly inside the
bay (Fig. 13, middle left), and the vessels that had been unloaded in the port and
had to wait for the next load or another service were waiting mostly outside of the
bay (Fig. 13, middle right). There were at most 4 simultaneously anchoring vessels
(Fig. 11). The vessels that had to wait for port services tended to accumulate over
the weekend, and their number reduced during the weekend (Fig. 12).

4.6 Exploration of the traffic through the strait

Although we found out that the vessel anchoring events are unlikely to be related to
the traffic in the strait, we are nevertheless interested in exploring the intensity and
the temporal patterns of the traffic. From all available data, we select the trajectory
fragments contained inside the strait area shown on the left of Fig. 9. There are 2,891
trajectory fragments satisfying the spatial query. To guarantee taking into account
not only the times of the vessels being inside the strait but also the entering and
exiting times, we extend each fragment by adding the preceding and following 45-
minutes parts of the trajectories. We obtain 1,366 trajectories, i.e., some trajectories
include two opposite movements through the strait. The trajectories are represented
by dashed dark gray lines in Fig. 14, top.

We use the two areas shown on the right of Fig. 9 for obtaining aggregate flows
through the strait in two directions. The total flow magnitudes are represented by the
widths of the curved lines in Fig. 14, top. Please note that flow symbols, such as the
curved lines in our map, only connect the origins and destinations of flows but do
not represent the movement paths. Therefore, it should not be thought that the red
flow symbol in our map represent movements of vessels through the land.

Therewere 1,010 inward and 995 outwardmovements (red and blue, respectively).
However, we have calculated not only the totals but have applied spatio-temporal
aggregation based on these areas and hourly intervals within the weekly time cycle.
Hence, for each direction, we obtained a time series consisting of 168 values of
the traffic volume in different hours along the weekly cycle. The aggregation over
the weekly cycle puts together the movements that happened in the same hours of
different weeks.
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Fig. 14 Top: the trajectories going through the strait and the aggregate flows derived from them.
Middle and bottom: the temporal distribution of the flow magnitudes over the hours of the week is
shown in a line graph and in two 2D histograms where the rows correspond to the days of the week
(from 1 for Monday to 7 for Sunday) and the columns to the hours of the day. In all images red is
used for the inward flow and blue - for outward.

The time series of the traffic volumes in the inward (red) and outward (blue)
directions are shown in a line graph and two two-dimensional histograms below the
map in Fig. 14. We see that the highest intensity of the outward movements was
reached in the hour 07:00-8:00 of all days, especially on Wednesday (day 3). The
highest peaks of the inwardmovements happened from 12:00 to 13:00 onWednesday
and early afternoons on Thursday and Friday. The inward trafficwas also higher in the
hour 18:00-19:00 of the days fromWednesday to Friday and in the hour 17:00-18:00
of the remaining days.

Interestingly, the increase of the inward traffic in the middle of the day and
early afternoon from Wednesday to Friday (Fig. 14, bottom left) correlates with the
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decrease of the number of anchoring vessels in these days, which we observed in
Fig. 12. It is probable that both patterns are related to the port operation schedule.
Please note that the histogram rows corresponding to the days of the week are
arranged from top to bottom in Fig. 14 and from bottom to top in Figs. 11 and 12.

5 Discussion and conclusion

Visual analytic techniques are meant to support data exploration and analytical
reasoning by a human. The human plays the key role in analysis. It is the task of
the human to understand what data are available and how to make them appropriate
to the analysis goal, what methods can be applied and what their results mean, and
how the results differ depending on the methods or the parameter settings applied.
It is also the task of the human to gain knowledge of the phenomena represented
by the data. Visualization is important for supporting the analysis because it can
convey information to the analyst in the most efficient way that enables perceiving
and interpreting patterns, abstraction, and generalization.

We have demonstrated the use of visual analytics techniques in examples of anal-
ysis scenarios that involved discovery of patterns, interpretation of these patterns,
and further analytical reasoning. We applied a number of different visualization
techniques in combination with interactive querying and filtering of the data, data
transformations, and computational derivation of new data, such as events and tem-
poral relationships between them. Besides data transformations, visual analytics
workflows often include methods for computational analysis and modelling, which
stem from statistics, data mining, geographic information science, and other areas
concerned with data analysis. We want to emphasize that such methods need to be
supported by interactive visualizations enabling interpretation and comparison of
the results, and that they need to be applied as a part of an iterative procedure in
which the human analyst examines the effects of the parameter settings and chooses
the most suitable ones.

Due to the interactive character of the visual analytics techniques, they typically
require the data under analysis to be loaded in the main memory of the computer,
which limits the scalability of these techniques to very large data volumes. Recent
research in visual analytics develops approaches to overcoming this problem by
combining data processing in a database with interactive operations on data samples,
aggregates, or other kinds of derivatives.As an example, paper [4] proposes a scalable
approach to clustering of trajectories according to the travelled routes.

Another challenge is application of visual analytics techniques to streaming data
such as AIS streams. A possible approach is the use of dynamically updated visual
displays in combination with computational analysis techniques specially developed
for streaming data. An example is interactive real-time detection and tracing of
spatial event clusters [7].

Visual analytics processes need to be performed prior to building computer mod-
els. Obtaining a good computer model requires that a human analyst understands
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what patterns it needs to capture and what modelling methods are suitable for this.
The analyst should also understand how the data need to be prepared to the mod-
elling. When a computer model is built, visual analytics techniques can greatly help
in investigating its performance and finding ways to improve it. A model developed
and tested in this way can be trusted and applied for justifiable decision making.

6 Bibliographical Notes

The book by Andrienko et al. [1] gives a detailed presentation of a broad spectrum
of visual analytics techniques supporting analysis of movement data. A state of the
art survey [5] uses a set of vessel trajectories as a running example to show how
different visual analytics techniques can support understanding of various aspects of
movement. A more recent survey [2] focuses on the application of visual analytics
in transportation studies. The number of visual analytics papers proposing various
approaches for analyzing movement data is very large and continues growing. Some
of them deal specifically with data describing movements of vessels. Variants of
dynamic density maps combined with specialized computations and techniques for
interaction [11, 16, 20] support exploration of not only the density but also other
characteristics of maritime traffic. Kernel density estimation can be used to compute
a volume of the traffic density in space and time [9], which can be represented vi-
sually in a space-time cube [10] with two dimensions representing the geographical
space and one dimension the time. Tominski et al. [19] apply a 3D view to show
similar trajectories as bands stacked on top of a map background. The bands consist
of colored segments representing variation of dynamic attributes along the routes.
Scheepens et al. [15] propose special glyphs for visualizing maritime data. Lundblad
et al. [12] employ visual and interactive techniques for analyzing vessel trajectories
together with weather data. Andrienko et al. [6] use vessel movement data to demon-
strate the work of an interactive query tool called TimeMask that selects subsets of
time intervals in which specified conditions are fulfilled. This technique is especially
suited for analyzing movements depending on temporally varying contexts.
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