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Summary 

The paper introduces the idea of generalising a cumulative frequency curve to 
show arbitrary cumulative counts. For example, in demographic studies 
generalised cumulative curves can represent the distribution of population or area. 
Generalised cumulative curves can be a valuable instrument for exploratory data 
analysis. The use of cumulative curves in an investigation of population statistics 
in Northwest England allowed us to discover interesting facts about relationships 
between the distribution of national minorities and the degree of deprivation. We 
detected that, while high concentration of national minorities occurs, in general, in 
underprivileged districts, there are some differences related to the origin of the 
minorities. The paper sets the applicability conditions for generalised cumulative 
curves and compares them with other graphical tools for exploratory data analysis. 
 
Keywords: Geographic visualisation, Exploratory data analysis, Data 
visualisation, Interactive graphics.  
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1 Introduction 
Exploratory data analysis (Tukey 1977) is the process of examining a data set with 
an objective to detect significant, previously unknown patterns and regularities. 
This process usually involves visualisation of the data on various graphical 
displays. For this reason the exploratory data analysis is sometimes also called 
“visual data mining”. Very often an analyst builds multiple displays for viewing 
the data from various perspectives.  Geographically referenced data are visualised 
on thematic maps – this gives an opportunity to explore their spatial distribution 
and detect relationships between the spatial variation of characteristics and various 
geographical phenomena and features, both natural (relief, land cover, climate, 
etc.) and related to people’s activities (roads, land use, etc.). Combination of maps 
with other types of graphs provides conditions for more comprehensive analysis 
and gaining additional insights into inherent data characteristics. 
 
In this paper we describe a case study of exploring geographically referenced 
demographic data concerning Northwest England using an interactive map and a 
cumulative curve display, an original data visualisation tool we have recently 
developed. First of all, we briefly describe the data set. Then we introduce the idea 
of the cumulative curve display. Besides having interesting properties that make it 
useful for data exploration, the display has excellent scalability characteristics and 
can be applied even to very large data sets. Next, we show how we arrived at 
interesting, previously unknown facts concerning relationships between some 
population characteristics and indices representing deprivation. Finally, we 
compare the cumulative plot display with other statistical graphics and interactive 
visualisation tools for exploring relationships between attributes.  
 

2 Northwest England Dataset 
The dataset with census data of Northwest England, on the ward level of 
administrative division, was provided to us by MIMAS (Manchester Information 
& Associated Services, University of Manchester, http://www.mimas.ac.uk/) 
within the EU-funded project SPIN! – Spatial Mining of Data of Public Interest 
(IST Program, project No. IST-1999-10536). The dataset contains values of 
various demographic attributes referring to 1011 spatial objects (wards): 
population number in total and in different groups by gender, nationality, 
education, employment, etc., number of households in total and by particular 
classes (e.g. households with no car), and so on. Besides these counts, there are 
values of four so-called deprivation indices: DoE (Department of the 
Environment’s Index of Local Conditions), Jarman Underprivileged Area Score, 
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Carstairs Deprivation Score, and Townsend Material Deprivation Score. 
Each index is calculated in its own way from a different set of original census 
attributes. An overview of the commonly used deprivation indices can be found at 
http://www.swpho.org.uk/pat18discuss.htm (Bunting 2000). 
 
The data provider expected that, after exploring the data set using interactive 
visualisation tools we had developed, in particular, within the SPIN! project, we 
would be able to characterise wards with high deprivation in terms of the 

  

Figure 1. The map on the left shows wards with positive values of the Doe
deprivation index by dark colouring. On the right, these wards are painted in
different shades according to the values of the Doe index. Darker shades
correspond to higher values. 
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demographic attributes available. Of course, this did not relate to the 
attributes used in the computation of the deprivation scores.  
 
We started our analysis with comparing values of the four indices and found that 
they are highly correlated: the pairwise computed correlation coefficients ranged 
between 0.899 (DoE vs. Carstairs) and 0.960 (Townsend vs. Carstairs). Hence, it 
was reasonable to focus on a single deprivation index rather than to try to analyse 
all of them. We selected the DoE index since we were informed that it was the 
most often used in demographic studies. The index comprises seven census-based 
variables: unemployment, children in low earning households, overcrowding, 
housing lacking basic amenities, lack of car ownership, children in 'unsuitable' 
accommodation, educational participation at age 17. Scores greater then zero 
indicate greater levels of material deprivation. 
 
The map in Figure 1, left, shows the spatial distribution of values of the DoE 
index. The wards with positive values of the index are painted in dark and those 
with negative values are light. The map on the right represents only positive 
values by degrees of darkness: the higher the value, the darker the colour. 
 
By visual examination of the map, one can detect two spatial clusters of high 
deprivation scores on the south of the studied area. They correspond to big cities 
Liverpool (on the west) and Manchester (on the east). In general, one can observe 
that high values are mostly associated with smaller wards that are located in urban 
areas and, hence, can be expected to have quite high population density.  

 
Figure 2. Wards with big areas have low values of the Doe index. 
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In order to check this statistically, we visualised the values of the DoE index 
and areas of the wards on a scatterplot display that shows also the correlation 
coefficient for this pair of attributes (Figure 2). It may be seen from the plot that, 
indeed, big areas mostly correspond to negative values of the DoE index while the 
highest deprivation scores correspond to small areas. At the same time, the 
correlation coefficient (-0.410) does not indicate a strong dependency.  
 
This situation shows us that one should not rely in data analysis solely on 
computed figures but try to gain additional information from graphical 
representations of the data. A scatterplot is, possibly, the simplest but, 
nevertheless, in many cases a very effective representation supporting 
investigation of relationships between attributes. However, a scatterplot is seldom 
suitable for attributes representing absolute counts. For analysing such attributes, 
we have devised the cumulative curve display. 

3 Cumulative Curve Display 
Cumulative frequency curve, or ogive, is one of well-known methods for 
graphical representation of statistical distribution of attribute values. In such a 
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Figure 3. How a cumulative frequency curve is constructed. 



 6
graph, the horizontal axis represents the value range of an attribute. The vertical 
position of each point of the curve corresponds to the number of objects with 
values of the attribute being less than or equal to the value represented by the 
horizontal position of this point. The method of construction of an ogive is 
demonstrated in Figure 3. Here, the ogive represents the distribution of values of 
the attribute CARSCAP (number of cars per capita) related to districts of some 
territory. 
 
Peculiarities of value distribution can be perceived from the shape of the ogive. 
Steep segments correspond to clusters of close values. The height of such a 
segment shows the number of the close values. Horizontal segments correspond to 
“natural breaks” in the sequence of values. 
 
We found it possible to generalise the idea of cumulative frequency curve and to 
build similar graphs summarising values of arbitrary quantitative attributes 
(counts). Examples of such attributes are area, population number, gross domestic 
product, number of households, etc. A generalised cumulative curve (GCC) is 
built as is demonstrated in Figure 4 by the example of a cumulative population 
curve. The same objects (districts) and the same attribute (CARSCAP) are used as 
in Figure 3. The horizontal axis of the graph corresponds, as before, to the 
attribute CARSCAP (we shall use the term “base attribute” to denote the attribute 
represented by the horizontal axis). For each position x on the horizontal axis, the 
corresponding vertical position is obtained by counting the total population in all 
districts having no more than x cars per capita. The resulting sequence of points is 
the cumulative population curve with respect to the attribute CARSCAP. Figure 4 
shows the cumulative population curve along with the cumulative frequency curve 

 

Minimum value of 
CARSCAP (0.13) 

Value 0.3 Value 0.5 Maximum value of 
CARSCAP (0.63) 

Number of districts with 
CARSCAP <= 0.3 (14% 
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CARSCAP <= 0.3 (26.6% 
of total population) 

Number of districts with 
CARSCAP <= 0.5 (72% 
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CARSCAP between 0.3 and 0.5 
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Cumulative population

Figure 4. Construction of the cumulative population curve for districts ordered by
the number of cars per capita (attribute CARSCAP).  
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for the attribute CARSCAP. It may be noticed that both curves have similar 
shapes, but the population curve rises a bit steeper for low values of the attribute 
CARSCAP while at the right end it is more gradual than the frequency curve. This 
indicates that the population is not distributed evenly among the districts: the 
districts with fewer cars per capita are more populated than the districts where the 
number of cars per capita is high. 
 
Another popular way to represent a distribution is frequency histogram, which can 
also be generalised in the same way as we did for cumulative frequency curve. 
However, unlike a cumulative frequency curve, a histogram requires a prior 
division of the value range of the base attribute into intervals. Such a division 
leads to substantial loss of information because it hides the distribution of values 
within each interval. At the same time, a cumulative curve graph can represent 
division into intervals by means of additional graphical elements. Thus, the 
horizontal axis of the graph may be suited to show interval breaks. In our 
implementation of the cumulative curve display (Figure 5), we use for this 
purpose segmented bars with segments representing the intervals. The positions of 
the breaks are projected onto the curve, and the corresponding points of the curve 
are, in their turn, projected onto the vertical axis. The division of the vertical axis 
is also shown with the use of coloured segmented bars. By construction, the 
lengths of the segments are proportional to the numbers of objects with attribute 
values fitting in the respective intervals. Hence, it becomes easy to compare the 
sizes of the object subsets (classes) corresponding to the intervals. For example, 
the interval breaks shown in Figure 5 divide the whole set of objects into 3 classes 
of approximately equal size that is demonstrated by the equal lengths of the bar 
segments on the vertical axis. 
 
The cumulative curve display as we designed it allows the user to add a GCC for 
any quantitative attribute to the cumulative frequency curve. The curves are 
overlaid, i.e. drawn in the same panel (see Figure 6). This is possible since they 
share the same base attribute. To be easier distinguished, the curves differ in 
colour. The horizontal axis is common for all of them. The vertical axes are shown 
beside each other on the left of the graph. Each of the vertical axes is divided into 
the same number of segments, but the positions of the breaks are, in general, 
different. Thus, Figure 5 shows us that 33.5% of all districts fit in the class 
corresponding to the first interval (from 0.134 to 0.405). They occupy only 9.6% 
of the total area but contain 48.6% of the total population living on the territory. 
 
As may be seen from this example, GCCs may be used for exploring relationships 
between several attributes. In particular, they allow one to see the distribution of 
population with respect to various indices characterising districts of territory 
division. This makes them especially suitable for demographic studies, such as the 
exploration of the deprivation in Northwest England. 
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By construction, GCC is similar to Lorenz curve (Schmid and Schmid 1979; first 
described in Lorenz 1905), which is used mainly in economic studies. Like GCC, 
Lorenz curve is also applied to quantitative attributes (counts), most often to 
attributes representing incomes. The method of the construction of a Lorenz curve 
is demonstrated in Figure 7. 
 

 

Figure 5. Values of the attribute CARSCAP are divided by 2 breaks (0.405 and
0.492) into 3 intervals. As a result, the objects have been divided into 3 classes of
approximately equal sizes (33.5%, 33.5%, and 33.0% of the whole set). The
segmentation of the horizontal axis shows the positions of the interval breaks, and
that of the vertical axis shows the corresponding division of the objects into
classes. 

 

Figure 6. Generalised cumulative curves are built for the attributes AREA and
TOTALPOP (total population) using CARSCAP as the base attribute. 
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For building a Lorenz curve, the objects under investigation are ordered by the 
values of the studied attribute (in our example income). Then, for each position x 
on the horizontal axis the corresponding vertical position is the cumulative income 
of the first x% objects in this row. Hence, like in the case of GCC, Lorenz curve 
involves the accumulation of values of some attribute. However, the difference is 
that the latter requires the objects being ordered by values of the same attribute 
that is used for accumulation while the former can be based on any numeric 
attribute. Furthermore, a Lorenz curve is a mapping (in the mathematical sense) 
between cumulative amounts and the corresponding numbers of objects whereas a 
GCC is a mapping between cumulative amounts and the values of the base 
attribute. This property makes a GCC suitable for exploring relationships between 
the cumulated attribute and the base attribute, while a Lorenz curve is helpful for 
examining the distribution of a single quantitative attribute, more specifically, for 
estimating how far this distribution is from the equal distribution (see the straight 
line in Figure 7). 
 
For both GCC and Lorenz curve, it is possible to put several curves on the same 
display. Again, these two kinds of display support different exploratory tasks. Two 

Total cumulated income 

0% objects 100% 
objects 

X1% objects 
ordered by 
incomes 

Cumulated income 
for the X1% 
objects ordered 
by incomes 

Cumulated income 
for X2% objects 
ordered by 
incomes 

Line of equal distribution 

Lorenz curve 

X2% objects 
ordered by 
incomes 

Figure 7. Construction of a Lorenz curve.  
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or more Lorenz curves are used for comparing distributions, for example, 
the distribution of income at different time moments (see Schmid and Schmid 
1979, p.138) or in different countries. Two or more GCCs allow one to see 
whether attributes B, C, … are related to the base attribute A similarly or 
differently. Let us demonstrate the use of this property in exploratory data analysis 
by the example of the investigation of the deprivation in Northwest England. 

4 Exploration of Deprivation in Northwest 
England 

The cumulative curve display in Figure 8 (in the panel right of the map) shows the 
statistical distribution of the values of the DoE index over the set of wards of 
Northwest England. The range of values of the DoE index is divided by breaks –3 
and 3 into three subintervals: low deprivation (below –3), medium (from –3 to 3), 
and high deprivation (over 3). Accordingly, the wards are grouped into three 
classes. The spatial distribution of the classes can be seen on the map. The wards 
with high deprivation are clustered at the locations of Liverpool (south-west) and 
Manchester (south-east). These clusters are mostly surrounded by districts with 
medium deprivation, although there is a “belt” of wards with lower deprivation on 
the north of the western cluster. However, in the northern part of the territory, 
which contains mostly wards with low deprivation, there are some spatial outliers, 
i.e. wards with medium and high deprivation scores. 
 
From the segmentation of the vertical axis of the cumulative curve display and 
from the figures below the graph one can see the distribution of the wards over the 
classes: 32.4% of the wards fit in the class with low deprivation, 28.5% in the 
class with medium deprivation, and 36.9% in that with high deprivation (for the 
remaining 2.2% wards the values of the DoE index are missing). 
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Let us now add cumulative curves for areas and population to the cumulative 
curve display. The result is presented in Figure 9. One can see that the shape of the 
cumulative population curve is very similar to that of the cumulative frequency 
curve while the cumulative area curve looks rather differently: it goes up much 
faster than the other two curves for low values of the DoE index, especially on the 
interval approximately between –10 and -3. The distribution of the total area 
among the classes of wards is the following: 68.7% of the total area of Northwest 
England is occupied by wards with low deprivation, 16.3% by those with medium 
deprivation, and 9.8% by wards with high deprivation (the remaining 5.2% of the 
total area belong to the districts with missing values of the DoE index). The 
distribution of the population is 21.3%, 30.2%, and 47.7%, respectively (and 0.8% 

 

Figure 8. The cumulative frequency curve (on the right) shows the statistical
distribution of values of the DoE index. On the map (right), the wards are
classified according to the values of the DoE index into classes with low
deprivation (below –3), medium (from –3 to 3), and high (over 3). The 
classification intervals are represented on the cumulative curve display by
segmentation of the horizontal axis. The segmentation of the vertical axis shows
the distribution of the total number of wards among the classes. 
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in the districts with missing DoE values). Hence, almost a half of the total 
population lives in districts with high deprivation, which constitute only 9.8% of 
the whole area. Thus, the cumulative curve display has allowed us to confirm the 
impression we got when we looked at the map in Figure 1, that is, that high 
deprivation scores mostly occur in smaller wards having higher population 
density. 
 
Let us see what is the relationship between the deprivation and the distribution of 
national minorities over the territory. For this purpose we select the attribute 
TOTAL_minorities (total number of people originating from foreign countries) for 
the representation on the cumulative curve display and compare the shape of the 
curve for this attribute with that of the curve for the total population (Figure 10). 
We see that the curve for the national minorities grows much more gradually than 
the curve for the total population on the intervals with low and medium values of 
DoE index and is very steep at the end, i.e. where the deprivation scores are the 
highest. Below the graph we see how the total number of the national minorities is 
distributed among the deprivation classes: while only 6.3% and 13.0% of people 
with foreign roots live in the wards with low and medium deprivation, 
respectively, 80.5% fit in the class with high deprivation. These figures become 
especially striking in comparison with the distribution of the total population 
(21.3%, 30.2%, and 47.7%, respectively). 

 

Figure 9. The distribution of the total area and population of North-West England in 
relation to the values of the DoE deprivation index. 
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It can be anticipated that the relationship to the deprivation is not the same for 
minorities with different origins. In order to detect the differences, we add the 
attributes TOTAL_AFRICAN (people originating from Africa), 

 

Figure 10. The distribution of national minorities in comparison to the
distribution of the whole population. 

 

Figure 11. The distribution of people originating from Africa and India is close
to that for all national minorities, while Chinese and other nationalities are 
distributed differently in relation to the deprivation. 
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TOTAL_INDIAN (people originating from India), and 
TOTAL_CHINESE_OTHER (people of Chinese and other origin) to the 
cumulative curve display and compare the curves built to the curve for the total 
minorities (Figure 11). For simplification, we removed the curve for the total 
population. 
 
We see that the curves for African and Indian population almost completely repeat 
the shape of the curve for all minorities. The figures of distribution among the 
classes are also close for these three attributes. For the population with the 
Chinese and other origin, however, the situation is quite different. The curve 
grows slowly on the interval with very low values of the DoE index but then the 
growth is almost even on the remaining part of the value range. There is no such 
steep increase in the area of the highest values of the DoE index as for the other 
national minorities. The distribution among the classes is also notably different 
from that for the other minorities: 11.8% in the class with low deprivation, 22.9% 
in the class with medium deprivation, and 64.9% in the class with high 
deprivation. 
 
Hence, using the cumulative curve display, we have uncovered interesting facts 
about the relationships between the level of deprivation and the distribution of 
national minorities across the territory of Northwest England. In particular, the 
cumulative curve display exposed the dissimilarity in how the minorities with 
different origins (African and Indian, on the one hand, and Chinese, on the other 
hand) are related to the deprivation. 

5 Discussion 
In our study, we used GCCs for exploring relationships between attributes. It is 
appropriate to compare this technique with other visualisation methods typically 
used for the same purposes. One of such methods is scatterplot. In our study, 
scatterplots occurred to be not very useful due to the peculiar feature of the 
distribution of the national minorities over the territory: the proportion of the 
national minorities is relatively low almost everywhere except for a few districts 
with much higher values, which are in this case statistical outliers. Thus, in Figure 
12 the counts for the different minorities (from left to right: all, Indian, African, 
and Chinese) are plotted against the corresponding values of the DoE index. In 
principle, it is possible to detect certain differences between the scatterplots, but 
they are less clearly visible than on the cumulative curve display in Figure 11. The 
logarithmic transformation of the scatterplots (Figure 13) does not help much due 
to the overplotting. This is a serious problem that makes scatterplots inappropriate 
for large datasets. On the opposite, generalised cumulative curve has a very 
important property of being scalable. This method of data visualisation is 
independent of the number of objects it is applied to; it is equally applicable to 
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twenty or to a million objects. A large number of objects is not even a serious 
obstacle to the display interactivity. Certainly, the initial sorting takes relatively 
long time, but after that, when the user changes the class breaks, the sizes of the 
segments on the axes can be recomputed and redrawn very efficiently. 
 
Let us compare GCC to other types of statistical graphics that can be applied to a 
pair of attributes without suffering from overplotting, for example, Q-Q (quantile) 
plot and P-P (percent) plot (Wilk and Gnanadesikan 1968, see also Cleveland 
1993). The idea of a Q-Q plot is to plot quantiles of one attribute against the 
corresponding quantiles of another attribute rather than the original attribute 
values. For building a P-P plot, the two attributes need to have the common value 
range (or, at least, their value ranges must significantly overlap). Then, for each 
attribute value, the percentage of the objects having this or lower value of one of 
the attributes is plotted against the percentage of the objects having this or lower 
value of the other attribute. 
 
The use of P-P plots for our data seems inappropriate because of the difference of 
the value range of the DoE index from those of the counts of the national 
minorities. In principle, we could normalise the attributes, but the presence of the 
outliers makes it difficult to find a suitable normalisation method. Since Q-Q plots 

 
Figure 12. Due to a particular distribution of the national minorities over the
territory, scatter plots occur to be inconvenient for exploring the relationship to
the deprivation. 

 
Figure 13. The result of applying a logarithmic transformation to the scatterplots 
from Figure 12. 
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appear to be applicable to arbitrary attributes, we tried to use them for the 
visualisation of our data. The result can be seen in Figure 14. 
 
The Q-Q plots show us that the distributions of all minority counts differ very 
much from the distribution of the deprivation scores. It can be also seen that the 
distribution of the Chinese minority is somewhat different from those of the other 
minorities. However, the Q-Q plots do not tell us anything about the relationships 
between the minority counts, on the one hand, and the deprivation scores, on the 
other hand.  
 
From interactive data visualisation techniques suggested for analysis of 
relationships between attributes, the best known is the so-called Influence 
Explorer (Tweedie et al. 1999), which is based on the use of frequency 
histograms. A user may have on the screen several histograms for different 
attributes. By clicking on one or more bars in one of the histograms, the user 
selects the subset of objects having the attribute values within the respective 
intervals. In response, all other histograms show in which intervals the values of 
the other attributes of the selected objects fit, by highlighting segments of the 
corresponding bars. The heights of the segments are proportional to the number of 
objects with the values fitting in the intervals. The technique is demonstrated in 
Figure 15 (for producing this figure, we used our own implementation of 
histogram display). In this way one may explore how distribution of one of the 
attributes is related to those of the other attributes, e.g. whether high values of one 
attribute mostly co-occur with high or with low values of another attribute. 
 
A disadvantage of a histogram is that it is based on a division of the attribute’s 
value range into intervals, which leads to an inevitable information loss since it 
masks differences between values within an interval. A gap in a value series will 
be unnoticeable if it is covered by one of the intervals. On a histogram, it is also 
impossible to see concentrations of close values. When such concentrations are 

 
Figure 14. Q-Q plots for exploring the relationships between the distribution of
various national minorities and deprivation. Quantiles of the minority counts
(from left to right: all minorities, Indian, African, and Chinese) are plotted
against the corresponding quantiles of the DoE index. 
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present in data, the shape of a histogram greatly depends on the choice of the 
intervals, i.e. whether a break occurs to be inside an interval of concentration or 
outside of it. As we already mentioned, a cumulative frequency curve is free of 
these disadvantages: it does not require any intervals and therefore minimises the 
information loss. Horizontal segments of such a curve reflect gaps between values 
and steep segments correspond to value concentrations. 
 
Sometimes (as in our case) data may be so particularly distributed that histograms 
become practically useless. Thus, the histogram for any minority count has one 
very high bar for the values close to 0, than a few much smaller bars for the next 
intervals, and the bars for the remaining intervals have zero heights and can only 
be noticed when “zooming” is applied, which cuts the high bars and stretches the 
low ones. For producing the screenshot shown in Figure 15, we had to convert the 
original values of the attributes TOTAL_AFRICAN, TOTAL_INDIAN, and 
TOTAL_CHINESE_OTHER to logarithms. However, such a transformation 
makes it more difficult for a user to understand which value interval each bar 
corresponds to.  At the same time, it may be seen from our examples that GCCs 
are quite tolerant to outliers in data, which is a clear benefit in our case. 
 
Another advantage of a cumulative curve display is that the distributions of two or 
more attributes (in relation to the same base attribute) can be compared 
immediately, without prior selection of an object subset, while in Influence 
Explorer one needs to select one or more bars in one of histograms. For a 
comprehensive investigation, this procedure needs to be repeated many times. On 
the other hand, in Influence Explorer all attributes are represented and treated in 
the same way while in a cumulative curve display there is a difference between the 
base attribute and the cumulated attribute. It is easy to compare the curves for 
several cumulated attributes having the same base attribute, but changing the base 
attribute actually means that a new display is built, which may have quite different 
properties. This may cause a certain inconvenience. Another limitation of the 
cumulative curve display is that a GCC can only be built for an attribute 
representing some absolute amounts, or, in other words, when it makes sense to 

 
Figure 15. Four histograms are dynamically linked: selection of bars in one of
them (left) results in highlighting the corresponding portions of bars in the other
histograms. This idea is used in the Influence Explorer. 
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sum up attribute values associated with different objects.  Thus, it is appropriate 
to build a cumulative curve for the absolute numbers of representatives of the 
national minorities in each ward but not for their proportions in the ward’s 
population. 
 
Like with cumulative frequency curve, it is possible to generalise the idea of 
frequency histogram for representing not only frequencies but also summary 
counts of areas, population, etc. In this case the heights of the bars may be 
proportional to the sums of these values. However, several cumulative curves can 
be much easier combined within a single display and compared than several 
histograms. On the other hand, histograms are more usual and better 
understandable for users than cumulative curves. 
 
As a non-spatial representation, a cumulative curve graph alone is unsuitable for 
exploration of spatially referenced data. Therefore a link between the graph and a 
map representing the spatial locations of the objects is important. We link the 
cumulative curve display with a map by means of classification, i.e. division of the 
geographical objects into groups according to values of the base attribute. The 
classes are assigned particular colours, and these colours are used for painting the 
objects on the map. Unfortunately, unlike a cumulative curve display, a map is not 
a scalable visualisation method. However, when there are clear patterns in the 
spatial distribution of attribute values, even a map with thousands of objects can 
be quite well perceived and useful for data analysis. 
 
The representation of classes on a cumulative curve display makes it also a useful 
tool for classification of geographical objects. It should be noted that geographers 
and cartographers recognise the usefulness of supporting the classification 
procedure with graphs showing the statistical distribution of values of an attribute 
used for defining classes. Thus, Yamahira, Kasahara, and Tsurutani (1985) 
suggested using a frequency histogram and Slocum (1999) uses so called 
dispersion graphs. Such representations allow a map designer to balance between 
geographical and statistical criteria, that is, to define classes of geographical 
objects so that, on the one hand, the territory is divided into the smallest possible 
number of coherent regions, on the other hand, variation of data within each class 
is low while differences between the classes are maximal. 
 
With the tool based on generalised cumulative curves, it is easy to account in 
classification not only for the statistical distribution of attribute values but also for 
such criteria as even distribution of population among the classes, or 
approximately equal total areas occupied by the classes, or other specific criteria 
that may emerge in this or that application domain. An analyst needs only to move 
the interval breaks and to observe the resulting segmentation of the corresponding 
vertical axis. In our implementation (Andrienko and Andrienko 1999), we provide 
a direct manipulation interface (Shneiderman 1983) for introducing and moving 
class breaks.  
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6 Conclusion 
In general, there is no “ideal” data representation that would be suitable for any 
purpose and for any user. In exploratory data analysis, it makes sense to consider 
the same data from diverse perspectives by visualising the data in various ways. 
We have demonstrated that generalised cumulative curves have a potential of 
prompting a particular sort of insights into data characteristics, that is, it allows an 
analyst to see whether attributes A and B relate to attribute C in the same way or 
differently. GCCs are, perhaps, especially useful in demographic studies, since 
they are very convenient for visualising and comparing the distribution of the total 
population and various population subgroups in relation to certain characteristics 
of the districts where the people live. 
 
A cumulative curve display combined with a tool for interactive classification of 
objects according to values of a numeric attribute can be used for defining object 
classes with desired properties, for example, classes with equal areas or 
population. A link to a map display allows a user to see immediately the spatial 
patterns formed by the resulting classes. This makes the cumulative curve display 
suitable for exploration of spatially referenced data. 
 
We have implemented the cumulative curve display within our system 
CommonGIS, which is available in the web at the URL 
http://www.CommonGIS.de/. 

Acknowledgement 

We thank the reviewers of the paper and the editor for helpful suggestions 
concerning its improvement. 

References 

Andrienko, G., and Andrienko, N., 1999. Interactive maps for visual data 
exploration. International Journal Geographical Information Science, 13, 355-374 
 
Bunting, J., 2000. Measuring deprivation: a review of indices in common use, 
http://www.swpho.org.uk/pat18discuss.htm 
 
Cleveland, W.S., 1993. Visualizing Data, Hobart Press, Summit, New Jersey 
 



 20
Lorenz, M.O., 1905. Methods of Measuring the Concentration of 
Wealth, Journal of the American Statistical Association, New Series, 70, 209-219 
 
Slocum, T.A., 1999. Thematic Cartography and Visualization. Prentice-Hall, New 
Jersey 
 
Schmid, C.F, and Schmid, S.E, 1979. Handbook of graphic presentation. Second 
Edition, John Wiley & Sons, Inc., New York 
 
Shneiderman, B., 1983. Direct Manipulation: A Step Beyond Programming 
Languages, Computer, August 1983, 57-69 
 
Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley, Reading 
 
Tweedie, L., Spence, R., Dawkes, H., and Su, H., 1999. Externalising Abstract 
Mathematical Models. In Card, S.K., Mackinlay, J.D., and Shneiderman, B. (Eds.) 
Readings in Information Visualization: Using Vision to Think, Morgan Kaufmann 
Publishers, Inc., San Francisco, California, pp. 276-284 
 
Wilk, M.B., and Gnanadesikan, R, 1968. Probability plotting methods for the 
analysis of data. Biometrica, 55 (1), 1-17. 
 
Yamahira, T., Kasahara, Y., and Tsurutani, T., 1985. How map designers can 
represent their ideas in thematic maps. The Visual Computer, 1, 174-184 
 


