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Abstract. The problem we address is prediction of expected values of some 
attribute of spatial objects based on values of other attributes, including the 
geographic positions. A common approach to obtaining such predictions is 
regression modelling. It is highly desirable that predictive models are not 
only accurate but also understandable to the users, which gives preference 
to simpler models. We propose a set of visualization techniques and inter-
active operations that supports exploration, evaluation, refinement, and 
simplification of regression tree models. In particular, the analyst can in-
vestigate how the model components and their properties are related to the 
spatial distribution of the objects, and can make the model better account 
for the spatial aspect of the data by generating new space-based attributes 
and supplying them to the model building tool. 
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1. Introduction and related work 

A very common task in many domains is prediction of expected values of 
some attributes based on values of other attributes. Regression models, 
which try to capture the interdependencies between attributes reflected in 
available data, are widely used for obtaining such predictions. Besides the 
prediction accuracy, a highly desirable feature of a model is its under-



standability to the user, which, in turn, requires the model to be sufficiently 
simple.  

The task of attribute prediction may apply, in particular, to attributes of 
spatial objects, i.e., objects located in geographic space. For spatial objects, 
not only thematic attributes may be relevant to the prediction task but also 
the geographic positions. For geographically referenced multi-attribute da-
ta, geographically weighted regression modelling has been proposed 
(Brunsdon et al. 1996). This approach is primarily suitable for phenomena 
that are spatially continuous (i.e., values exist everywhere in space) and, 
moreover, spatially smooth (i.e., values in neighbouring locations do not 
differ much). It is less suitable for discrete spatial objects and for spatially 
abrupt phenomena. In the latter cases, it may be more appropriate to use 
the generic regression, which may account for attributes representing the 
object positions and properties of their spatial distribution. Appropriate 
attributes may not be originally available in data but may need to be created 
by the analyst who builds a model. 

The work of analysts on building regression models needs to be supported 
by tools enabling exploration of model quality and other properties as well 
as model refinement and simplification. Supporting model building, explo-
ration, and refinement by interactive visual interfaces is an actively re-
searched topic in visual analytics. In many works, interactive visualisations 
are designed to help users to explore, understand, and evaluate a previously 
built model but not to build or modify the model. Thus, Demšar et al. 
(2008) employ coordinated linked views and clustering for exploration of a 
geographically weighted regression model of a spatio-temporal phenome-
non. Matković et al. (2010) support users in exploring multiple runs of a 
simulation model. Visualisation and interaction can reduce the overall 
number of simulation runs by allowing the user to focus on interesting cas-
es. Maciejewski et al. (2011) suggest an interactive visual interface allowing 
the user to explore the results of a pandemic simulation model and investi-
gate the impact of various possible decision measures on the course of the 
pandemic.  

Among the works where interactive visual techniques support the process of 
model building, several papers focus on classification models. Garg et al. 
(2008) suggest a framework where a classifier is built by means of machine 
learning methods on the basis of positive and negative examples (patterns) 
provided by the user through an interactive visual interface; the user finds 
the patterns using visualisations. Migut and Worring (2010) visualise a 
classification model, particularly, the decision boundaries between classes. 
Interactive techniques allow the user to update the model for achieving de-
sired performance. Guo et al. (2009) suggest techniques that help an ana-
lyst to discover single and multiple linear trends in multivariate data. An-
drienko & Andrienko (2013) propose a framework that supports predictive 



modelling of time series of event counts for a discrete tessellation of a terri-
tory. There are specific visual analytics methods supporting exploration of 
relationships between pairs of variables and enabling incremental construc-
tion of particular kinds of predictive models, such as linear regression 
(Zhao et al. 2014) and regression trees (Muehlbacher & Piringer 2013).  

In the current paper, we propose a set of visualisations and interactive op-
erations intended to support building, exploration, and refinement of re-
gression models for prediction of thematic attributes of spatial objects. In-
teractive maps are used for exploring whether and how the prediction accu-
racy, model components, and model properties are related to the geograph-
ic space. The maps are combined with other types of display providing addi-
tional perspectives onto model properties and outcomes. Interactive opera-
tions allow generation of new attributes based on the spatial distribution of 
the objects, to be used for progressive model refinement. The overall set of 
techniques support an iterative process of model building, in which an ini-
tial model obtained from an automatic model generation tool is gradually 
improved due to better accounting for the spatial aspect of the data. 

The proposed set of techniques is implemented as a general framework uti-
lizing a bi-directional link between a general purpose open source data min-
ing software Weka (Witten et al. 2011), which includes, in particular, a set 
of regression modelling algorithms, and a space-time visual analytics re-
search prototype V-Analytics (Andrienko & Andrienko 2006, Andrienko et 
al. 2013). We demonstrate the use of the techniques on a real world data set 
of real estate properties. The purpose of modelling is prediction of the rela-
tive prices (per square metre) of apartments registered at a real estate agen-
cy in Tomsk (Russia) based on historical data.  

2. Domain problem settings and example dataset  

Real estate business is an extremely important part of the world economy, 
providing an essential tax share to budgets of local communities (Musgrave 
& Musgrave 2009, Weingast 2009). A variety of real estate services are de-
veloping, including pre-sell object valuation (Adair et al. 1996). Real estate 
information is used for many purposes, including regional planning at large 
and estimation of different kinds of payments and compensations. While in 
many countries planning practices are well established (Davies et al, 1989), 
specific non-standard procedures can be observed in countries with transi-
tion markets (Ryumkin 2006, Qian et al. 1996).  

An important aspect of real estate information is price assessment based on 
object attributes such as location, size, condition etc. A large number of 
relevant publications is available (see, for example, Kauko & d’Amato 
2008). The known approaches are based on mathematical modelling, sta-



tistics (Hui et al. 2010), neural networks, spatial analysis (Anselin 1998), 
just to name a few. Still, professional assessors are often quite critical to the 
results of these approaches. While it is not the goal of our work to outper-
form any of the existing methods of real estate price assessment, we show, 
by example of regression modelling, how interactive visualisations and data 
transformations can be used for improving model accuracy and at the same 
time for model simplification, which improves understandability. 

Our example dataset describes about 1,100 objects valuated by a real estate 
agency in Tomsk (Russia) over a 30 months period from January 2012 till 
July 2014. Each object is described by the following attributes: 

 date of evaluation 

 location (longitude and latitude) 

 size (in sq.m.) 

 price (in RUB) 

 material of walls (0=panel building, 1=brick) 

 condition (0=rough finish, 1=bad, 2=average, 3=good) 

Based on initial visual exploration of the data, some records have been re-
moved because of missing values or obvious errors, e.g., unrealistic values 
or combinations of values, such as extremely expensive very small apart-
ments. For the remaining 1,070 objects, additional attributes have been 
derived: 

 relative price, RUB per sq.m. 

 distance to the city centre (km) 

Attribute “condition” has been transformed to 4 binary attributes: Condi-
tion_no, Condition_1, Condition_2, and Condition_3. 

For building predictive models capturing the dependency of the relative 
price on the other attributes, we use classification algorithms available in 
the data mining library Weka (Witten et al. 2011). One of the commonly 
used approaches to dealing with multi-attribute dependencies is linear re-
gression (Seal 1967). A linear regression model estimates the value of a de-
pendent variable as a linear combination of values of independent varia-
bles.  

In our example, an application of the linear regression method with 10-fold 
cross-validation results in the following model:  

predictedPriceM2 = 2828915.5193 – 9255.4838*Long – 35205.0744*Lat – 
943.2268*Dist – 54.4402*Size – 1057.0997*Condition_no – 
1333.9755*Condition_1 + 651.4758*Condition_2 + 2071.8255*Condition_3 
+ 2296.9453*Material  



This model appears quite reasonable as it indicates that the price is influ-
enced positively by the quality (condition) and the material and negatively 
by the distance from the city centre and the object size (the price per area 
unit of larger objects is smaller). The regression equation also indicates a 
geographic trend of price decrease towards the east and north. It should be 
noted that the independent attributes have different value ranges; there-
fore, direct comparison of regression coefficients is not meaningful.  

While the model corresponds to what could be expected, its accuracy is very 
low. The correlation between the recorded and predicted prices is rather 
weak (coefficient=0.305). A more sophisticated modelling method is re-
gression tree (Wang & Witten 1997). In our example, it achieves a slightly 
better prediction quality with the correlation coefficient of 0.588. However, 
the model is much more difficult to interpret, as it consists of 21 linear 
models built for subsets of the data. The division into subsets is done auto-
matically by the algorithm and represented in the form of splitting tree, a 
fragment of which is shown in Figure 1. Each non-terminal node contains a 
condition on the values of some independent variable and each terminal 
node corresponds to one partial linear regression model.  

 

Figure 1. A fragment of a splitting tree showing how a data set is divided into subsets de-
scribed by different linear regression models. 

Since the model accuracy is too low while the complexity is too high, it is 
appropriate to try to refine and at the same time simplify the model. We 
shall do this using a procedure of progressive model refinement, which fol-
lows the ideas of progressive clustering (Rinzivillo et al. 2008). Before 



demonstrating the procedure, we shall introduce the visualizations support-
ing exploration of model quality and other properties. 

3. Visualisation support to model exploration 

Exploration of a regression tree model includes the following tasks: 

1. Analyse model quality in terms of prediction errors. 
2. Analyse model structure in terms of object set partitioning. 
3. Analyse the quality of the model components (sub-models) in terms 

of prediction errors. 
4. Analyse the sub-models in terms of the impacts of different attrib-

utes on the predicted value. 

Task 1. The model quality is assessed based on the statistical and spatial 
distributions of model errors, i.e., the deviations of the predicted attribute 
values from the actual ones. From the model building algorithm, the pre-
dicted values are obtained. Subtracting the actual values from then gives the 
absolute errors, from which, in turn, relative errors can be computed as 
ratios or percentages of the absolute errors to the actual values. The statisti-
cal distribution of the errors can be investigated using statistical graphics, 
such as frequency histograms and box-and-whiskers plot (Fig. 2).  

 

Figure 2. The statistical distribution of relative prediction errors is represented by a fre-
quency histogram, a box-and-whiskers plot below it, and a set of numeric statistical 
measures in the upper right corner. 

The spatial distribution is studied using cartographic visualisations. A pos-
sible visualization is demonstrated in Fig.3 (left). The relative errors are 
represented by proportionally sized circle symbols placed on a map accord-
ing to the positions of the geographic objects for which the prediction has 
been done. Two different hues, such as red and blue, are used for represent-
ing positive and negative errors, i.e., over-estimation and under-estimation 



of the attribute values. Errors can also be represented by colouring or shad-
ing; however, in case of point objects, as in our example, representation by 
symbols or diagrams may be more effective. Interactive filtering allows the 
analyst to focus on the spatial distribution of high errors, i.e., those that lie 
beyond a chosen tolerance interval. In our example, the interval is from -20 
to 20%. 

  

Figure 3. Left: The spatial distribution of the relative prediction errors is shown on a map 
by circle symbols with sizes proportional to the amount of error and colours showing the 
sign (positive or negative). Right: As a result of interactive filtering (top), the map shows 
only the locations where the amount of error is beyond a specified tolerance interval (from -
20 to 20% in this example). 

Task 2. As explained earlier, a regression tree model consists of several 
regression models, each covering a subset of objects. The subsets are de-
fined based on values of some attributes chosen by the algorithm. The ana-
lyst may be interested to see what subset of objects is covered by each sub-
model and whether the division into the subsets has any relation to the spa-
tial distribution of the objects. The modelling algorithm does not directly 
tell which sub-model corresponds to each object; however, this information 
can be reconstructed by re-partitioning the object set using the same split-
ting conditions as in the regression tree. The so obtained sub-model refer-
ences for the objects are added to the data as values of a new qualitative 
attribute, which can be visualised on maps using suitable visualisation 
techniques. 

For example, in Fig. 4, left, the sub-model references of individual objects 
are represented by coloured dots, each unique colour corresponding to one 
of the sub-models. Using interactive filtering controls, e.g., as shown in the 



lower right corner of the map, the analyst can separately view the spatial 
distribution of each object subset or compare the distributions of two sub-
sets. To see more explicitly the areas in space covered by the object subsets, 
the analyst may build and visualise the spatial convex hulls of the subsets. 
An example is shown in Fig. 4, right. The hull contours are semi-
transparently filled with the colours assigned to the sub-models. It can be 
seen that the areas covered by sub-models 2 and 3 almost coincide, and the 
same is true for sub-models 4 and 5. These two pairs of sub-models are spa-
tially separated, while the area of sub-model 1 extends almost over the 
whole territory and almost completely covers the areas of the other sub-
models. 

  

Figure 4. Left: Each object is represented by a dot coloured according to the regression tree 
sub-model applicable to this object. Right: the areas in space covered by the object subsets 
are shown in the form of their spatial convex hulls. 

Task 3. The interactive legend shown in the lower right corner of the map 
in Fig. 4, left, and used for selecting object subsets for viewing, affects not 
only the map it belongs to but also all other displays currently present on 
the screen. In particular, if there exists another map showing the prediction 
errors, as in Fig. 3, this map will only show the errors for the currently se-
lected object subset(s), i.e., the subset selection works as a filter. Similarly, 
the statistical displays will represent the statistical distribution of the values 
for the currently selected object subset(s).  Hence, the analyst can conven-
iently analyse the spatial and statistical distributions of the prediction er-
rors for each sub-model. Moreover, the object subset filter is automatically 
combined with all other filters that are currently in operation, such as the 
attribute-based filter shown on the top right of Fig. 3 (the filter selects the 
error values beyond the tolerance interval from -20 to 20%). This allows the 



analyst to specifically look at the spatial distribution of high prediction er-
rors for each sub-model, as demonstrated in Fig. 5. 

 

 

Figure 5. By interactive selection of object subsets dealt with by different sub-models, the 
analyst can investigate the spatial distribution of the prediction errors separately for each 
sub-model. The two screenshots refer to sub-models 1 (left) and 5 (right). The interactive 
legend enabling subset selection is shown in the upper right corner of the left map and in the 
lower left corner of the right map. The subset selection is combined with the attribute-based 
filter shown above the maps. 

Task 4. The impact of different attributes on the prediction can be judged 
from the corresponding coefficients in the regression formulas of the sub-
models. Since the attributes used for the prediction may not be comparable, 
as in our example, the coefficients for different attributes are also not di-
rectly comparable. However, the coefficients for the same attribute in dif-
ferent sub-models are comparable. For a convenient assessment and com-
parison of the relative impacts of different attributes, the coefficients need 
to be brought to a common range, such as from -1 (highest negative impact) 
to 1 (highest positive impact) or from -100 to +100%. This may be done by 
dividing each coefficient in each sub-model by the maximal modulus (i.e., 
absolute value) among the coefficients for the same attribute in all sub-
models. To obtain percentages, the ratios are multiplied by 100. 

The original or transformed coefficients from the different sub-models can 
be visualised on multi-attribute displays, such as the bar chart shown in 
Fig. 6, where the rows correspond to the different attributes and each group 
of bars of the same colour corresponds to one of the sub-models. The bar 
lengths are proportional to the absolute values of the transformed coeffi-



cients, and the bar orientation (left or right) shows their signs, which, in 
turn, show whether the impacts are negative or positive. 

 

Figure 6. A bar chart display enables comparison of the impacts of different attributes on 
the prediction in different sub-models. 

 

Figure 7. The attribute impacts are visualised on a diagram map. Each diagram corre-
sponds to one sub-model. The bar heights are proportional to the amounts of impact and the 
bar orientations (up or down) to the signs (positive or negative). 

For relating the attribute impact indicators, i.e., the transformed coeffi-
cients, to the spatial context, the indicator values can be visualised by dia-
grams drawn on a map. The problem is that the coverage areas of the sub-
models may greatly overlap or even nearly coincide. When a diagram is put 
at the centre of each area, the diagrams corresponding to different sub-



models may overlap, which complicates reading. Therefore, it is reasonable 
to select a representative point on a map for each sub-model so that the 
points are sufficiently distant from each other, and use these points as the 
positions for the diagrams. The points can be interactively specified by the 
analyst, e.g., by mouse-pointing on the map. Thus, the analyst may select 
representative points within spatial concentrations of objects belonging to 
the different subsets. 

In Fig. 7, the relative impacts of the different attributes in the sub-models 
are visualised using bar diagrams, which are placed on a map at the posi-
tions of selected representative points for the sub-models. In one diagram, 
each bar represents the impact of one attribute. The bar lengths are propor-
tional to the amounts of impact and the orientations (up or down) show the 
impact signs, i.e., positive or negative. To facilitate the association of the 
diagrams to the sub-models, which are consistently represented by distinct 
colours in various displays, the diagrams are drawn on top of circles painted 
in the colours assigned to the models. 

An alternative visualisation of the same information is “small multiples” 
(Tufte 2001, 1983), i.e., a display with multiple small maps, each represent-
ing the relative impact indicators for one attribute in the different models. 
An example is demonstrated in Fig. 8. In each small map, the relative im-
pact values for one attribute are represented by standalone bars with the 
heights proportional to the amounts of impact. The impact signs (positive 
or negative) are represented by bar orientations (up or down) and, addi-
tionally, by bar colours (orange or cyan). 

 The diagram map in Fig. 7 allows comparison of the overall profiles of the 
impacts of the different attributes among the sub-models. Thus, if the sub-
model coverage areas differ, the analyst may look whether sub-models cov-
ering close or overlapping areas have similar attribute impact profiles.  In 
our example, this is the case for the pair of sub-models 4 and 5, the over-
lapping coverage areas of which are located on the north, and not the case 
for the sub-model pair 2 and 3, the coverage areas of which are almost iden-
tical but the profiles are quite different. 

The small multiple map in Fig. 8 allows the analyst to consider each attrib-
ute separately and compare the sub-models with regard to the impacts of 
each attribute. In particular, the analyst can judge for each attribute wheth-
er the differences between the impact values are related to the spatial posi-
tions of the objects. Thus, in our example, the attribute “Condition_2” has 
positive impacts on the north of the territory and negative or no impact on 
the south. It can also be seen that model 1 (red), which covers the whole 
territory, strikingly differs, in terms of the attribute impacts, from the other 
models, which cover the northern or southern parts of the territory. 



 

Figure 8. In a “small multiple” map display, each small map shows the relative impacts of 
one attribute on the prediction in different sub-models. The amount of impact is represented 
by bar heights and the sign of impact (positive or negative) by bar orientation (up or down) 
and colour (orange or cyan). 

In Figs. 4 to 8, we have presented visualisations that can be used for the 
exploration of model components (sub-models). However, all these meth-
ods can be effective only in the case of a relatively small number of compo-
nents. Even irrespectively of the visualisation techniques, it is very tedious 
and time consuming to explore a large number of components, for example, 
the 21 sub-models of the tree a fragment of which is shown in Fig. 1. Such 
an activity may be even meaningless because a complex model with a large 
number of components is not necessarily more accurate as a simpler model. 
Therefore, it is reasonable to try to simplify and, if possible, simultaneously 
refine the model before starting the exploration of its components. Thus, 
the illustrations in Figs. 4 to 8 have been produced using an already simpli-
fied model. In the next section, we propose a set of visually supported inter-
active operations that support model simplification and refinement. 



4. Interactive operations for model simplification and 
refinement 

Since there is no way to intervene in the work of the model building algo-
rithm, the only way to change its output is by modifying the input. There 
are, obviously, two basic ways to modify the input: change the set of objects 
and change the set of attributes. In the context of our work, we are specifi-
cally interested in changes that make the algorithm better account for the 
spatial aspect of the data, i.e., for the object distribution in space. The exist-
ing classification algorithms can account for the spatial aspect only if it is 
represented by some attributes along with the other (thematic) attributes to 
be used for the prediction. In particular, the geographic coordinates (longi-
tudes and latitudes) of the spatial objects can be supplied to a model builder 
as attributes, and they will be treated as usual numeric attributes. So we did 
in our example, where the coordinates are represented by attributes “Long” 
(longitude) and “Lat” (latitude). The coordinate-based numeric attributes 
may participate in the object set partitioning and/or in the regression for-
mulas of the sub-models. However, this basic way of accounting for the spa-
tial aspect may be insufficient for obtaining a good (i.e., sufficiently accu-
rate while simple) prediction model. In this section, we shall consider pos-
sible additional ways for involving the spatial aspect in the modelling. 

4.1. Modification of the object set 

After obtaining an initial model, it is reasonable to look whether and how 
the spatial aspect (so far only in the form of object coordinates) is repre-
sented in this model. However, the initial model may be too complex for 
exploration, as in our example, where the model has 21 sub-models. To 
simplify a too complex initial model and thereby make it better suitable for 
interactive exploration, we propose to temporarily remove “prediction qual-
ity outliers” from the object set, i.e., the objects for which the prediction 
errors of the initial model are very high. 

1.1.1. Removing outliers  

The outliers can be identified based on the statistical distribution of the 
model errors, for example, by applying the definition of an outlier adopted 
in statistics: an outlier is a value lying beyond the interval [median – 
1.5*IQR, median + 1.5*IQR], where IQR is the inter-quartile range, i.e., the 
difference between the third and the first quartiles. The reduced object set 
is then sent to the model building tool, which can be expected to produce a 
simpler model. 

In our example (see the statistics on the top right of Fig. 2), the median of 
the relative prediction errors is 1.4, the first and third quartiles are -7.5 and 



10.4, respectively, the interquartile range is thus 17.9, and the interval to be 
used for identifying the outliers is [-25.45, 28.25]. We use the attribute-
based filter to select only the objects with the relative error values within 
this interval and remove the outliers. The “cleaned” object set consists of 
996 objects out of 1,070, i.e., 74 objects (6.9% of all) are outliers. We send 
the reduced object set to the model building tool, which produces a model 
having only 8 sub-models (see Fig. 9, left) and a much better correlation 
(0.68) between the predicted and original price values than in the original 
model (0.588). Now we can more conveniently investigate whether the ob-
ject coordinates have been taken into account in the object set partitioning 
by the model builder. We see that the longitude has played some role but 
rather moderate since it was used for making quite small object subsets 
(with 25, 41, and 44 objects). The part of the tree in which the division by 
the longitudes is done is marked in Fig. 9, left (it is in the lower right corner 
of the tree view). On the right of Fig. 9, the spatial distribution of three ob-
ject subsets corresponding to this part of the tree is shown on a map; the 
dot colours correspond to the three different sub-models residing in the 
tree leaves. 

 

Figure 9. Left: The splitting tree shows the partitioning of the object set in a simplified 
model resulting from the outlier removal. The red dotted polygonal line marks the part of the 
tree where the geographic coordinates (longitudes) are used in defining object subsets. 
Right: The map shows the spatial distribution of the object subsets corresponding to the 
marked part of the tree. The dot colours represent the three sub-models located in the leaves 
of the marked part of the tree. 

We see that the division according to the longitude is too crude and, gener-
ally, does not respect the natural spatial grouping of the objects. However, 
all but three objects represented by the red dots make a kind of spatial clus-
ter on the northeast. This part of the city is separated from the rest by a 
railway line. It may be reasonable to try to apply the modelling algorithm 
separately to this part and to the remaining part of the territory. For this 
purpose, the object set can be interactively divided into geography-related 
subsets using the map interface. 



As we mentioned, the outlier removal is used as a temporary measure for 
reducing the complexity of the initial tree and allowing the analyst to see 
which attributes have what impact on the object set division. After gaining 
this understanding, the filter used for outlier removal is cancelled, and the 
analyst further works with the complete object set. 

1.1.2. Interactive subdivision of the object set 

A possible interactive interface for geography-based object set division is 
demonstrated in Fig. 10. On the right, a set of interactive controls allows the 
analyst to create an arbitrary number of classes, give names (labels) to 
them, and choose class colours. By mouse clicking or mouse dragging on a 
map, the analyst can select a group of objects and, by pressing the button 
“Selection >> class”, assign them to one of the classes. In this way, various 
geography-based object classifications can be created. In the example in 
Fig. 10, we have divided the set of objects into three classes: “NE” located in 
the north-eastern part of the city, which is separated from the rest by a 
railway, “S” located on the south and separated from the rest by a small 
river, and “N + centre” including the remaining objects. The classes are rep-
resented on the map by dot colours: red, blue, and yellow, respectively. 

 

Figure 10. The object set is interactively divided into subsets based on the spatial distribu-
tion of the objects and the properties of the underlying territory.  

The purpose of the object set partitioning is to try to refine and simplify the 
regression tree model by applying the modelling algorithm separately to 
parts of the territory that differ in their properties. Obviously, to achieve 
simplification, the number of parts to consider should not be large. 



In our example, the application of the algorithm separately to the class 
“NE” results in a regression tree consisting of only three sub-models, the 
object subset being subdivided based on the property sizes. Along with the 
simplification, the prediction quality substantially increases: the correlation 
between the predicted and actual values is 0.645 instead of 0.588 for the 
initial model. However, the results for the classes “S” and “N + centre” are 
not as good as for “NE”. The trees consist of 5 and 8 sub-models, and the 
correlation coefficients are 0.456 and 0.569, respectively, i.e., worse than it 
was initially. Since the results for “NE” are good, it is reasonable to keep 
this part separate and apply the algorithm to all remaining objects taken 
together, i.e., to the union of the classes “S” and “N + centre”. When we do 
this, we obtain a regression tree with only 4 sub-models, the object set be-
ing also subdivided based on the property sizes, as for the “NE”. The corre-
lation coefficient is 0.553, i.e., the prediction quality for the two joint clas-
ses is slightly lower than for the initial model. Hence, we have achieved a 
substantial simplification by replacing the initial 21 sub-models by only 7 (3 
for “NE” and 4 for the rest), but we need to work further on improving the 
prediction quality, especially in the western part of the city.  

4.2. Generation of additional space-related attributes 

Low prediction quality of a model often means that the target attribute (i.e., 
the values of which is predicted) is influenced by some factors that are not 
reflected in the available data. The only way to improve the prediction qual-
ity in this case is to obtain additional data that can be attached to the ob-
jects as values of new attributes. Additional attributes of objects under 
study can be derived from other datasets related to the same territory. For 
example, if we had data concerning the levels of air pollution or noise over 
the city of Tomsk, we could derive the pollution or noise values at the loca-
tion of each property and let the modelling algorithm make use of these 
values. It can be expected that the environment characteristics affect the 
real estate prices, and accounting for these characteristics in model building 
can improve the model prediction quality. Unfortunately, we cannot 
demonstrate this approach to data enrichment since we have no additional 
data for the territory of Tomsk. 

Another (complementary) approach is to take into account the spatial dis-
tribution of the model errors. Thus, Fig. 3 suggests that positive and nega-
tive prediction errors may tend to be spatially grouped. The idea of the ap-
proach is to (1) divide the territory into compartments accounting for the 
spatial distribution of the objects, (2) compute for each compartment the 
mean prediction error of the current model, (3) for each object, attach the 
mean prediction error from the containing compartment as the value of a 
new attribute, and (4) supply the new attribute values together with the 



previously existing ones to the modelling algorithm. New attributes can be 
generated based on both the absolute and relative prediction errors of the 
current model. It can be expected that the modelling algorithm will use the 
new attributes for making corrections in the prediction. 

The approach is illustrated in Fig. 11. For partitioning the territory into 
compartments based on the object distribution, we use the point clustering 
algorithm proposed by Andrienko (2011). The algorithm organises points 
into groups fitting in circles with a given maximal radius. The centres of the 
groups are then taken as generating seeds for the Voronoi tessellation. By 
varying the radius, larger or smaller spatial compartments can be obtained. 
On the left of Fig. 11, the compartments have been obtained using the max-
imal radius of 2000 metres. The red dots are the centres of the point clus-
ters built by the clustering algorithm and simultaneously the generating 
seeds for the Voronoi polygons. The polygons are shaded according to the 
computed mean relative errors, with shades of brown representing positive 
errors and shades of blue negative errors. The errors have been computed 
based on the predictions obtained from the combination of two regression 
trees (for the northeast and for the rest of the territory) described in the 
previous section. 

   

Figure 11. The territory is divided into compartments based on the spatial distribution of 
the point objects. Summary statistics of the prediction errors are computed for the com-
partments and used in modelling, along with the original attributes, for correcting the pre-
diction error. This approach can be tried with different compartment sizes. 

After building the polygons and computing the mean absolute and relative 
errors within each polygon, we transfer these computed values to the ob-
jects contained in the polygons. Then we apply the modelling tool to the 
original attributes of the objects plus the two new attributes, i.e., the abso-
lute and relative errors within the containing polygons. The result of the 
application is encouraging: the model includes only 8 sub-models, and the 
correlation is slightly higher: 0.603 against 0.588. To further improve the 
results, we try finer territory divisions by decreasing the maximal allowed 



radius of a point cluster for the clustering algorithm. In the centre of Fig. 11, 
the division has been obtained with the maximal radius of 1200 m. The re-
sults for this division do not differ much from the previous one: 8 sub-
models with correlation coefficient of 0.614. However, decreasing the max-
imal radius to 1100 m leads to a regression tree with only 5 sub-models and 
correlation coefficient of 0.629. The illustrations in Figs. 4 to 8 are based on 
this result. Interestingly, an attempt to build separate models for the north-
eastern parts and for the rest does not really improve the model. The total 
number of sub-models increases to 10 (3 for the northeast and 7 for the 
rest). The correlation coefficients are 0.641 for the northeast and 0.607 for 
the rest. While the latter is better than it was without accounting for the 
model errors, the former is slightly worse. There is no clear quality gain 
compared to the variant with 5 sub-models but the complexity is twice as 
much. Hence, it makes sense to use the simpler model built for the whole 
object set. 

The territory division can be further refined by decreasing the maximal 
cluster radius for the clustering algorithm. With the maximal radius of 900 
m, we obtain a yet simpler tree with only 4 sub-models and correlation co-
efficient 0.631. It should be borne in mind, however, that too fine division 
of the territory may lead to model over-fitting, i.e., reproducing occasional 
fluctuations rather than essential spatial patterns. The analyst should de-
cide what level of division is appropriate based on the knowledge of the ter-
ritory and the data. 

5. Conclusion 

As was said at the beginning, it was not the goal of this work to build a per-
fect model for real estate price prediction. Our goal was to support model 
understanding, exploration, simplification, and refinement, specifically, 
taking into account the spatial aspect of data used as input for model build-
ing. For the real estate data, which were used as a test case and as an exam-
ple in this paper, we could achieve great simplification (from 21 sub-models 
to 5 or even 4) and moderate improvement of the prediction quality. It is 
clear that the available data do not reflect all factors affecting the prices, 
and additional data would be necessary for further quality improvement. 
However, the available data were sufficient for our purposes: we have found 
and demonstrated the possible ways of making simpler and better models 
using interactive map-based operations and spatial computations. 

The techniques proposed in this paper are suited to a particular kind of 
predictive models, namely, regression tree classification models. They are 
applicable to spatially referenced objects, not necessarily points, character-



ised by multiple thematic attributes. The techniques and procedures can 
thus be used in a variety of application domains. We would like to stress 
that all proposed techniques involve interactive maps and map-based inter-
faces for spatial clustering and spatial computations. Effective use of these 
techniques for modelling is underpinned by a bi-directional link between 
the visualisation system and the model building tool. 
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