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Abstract. Data classification, i.e., organising data items in groups (classes), is a general technique 
widely used in data visualisation and cartography, in particular, for creation of choropleth maps. 
Conventionally, data are classified by dividing the data range into intervals and assigning the same 
symbol or colour to all data falling within an interval. For instance, the intervals may be of the same 
length or may include the same number of data items. We propose a method for defining intervals so 
that some quantity represented by values of another attribute is equally distributed among the 
classes. An example is dividing a set of geographic regions into classes according to the values of the 
attribute “Birth rate” so that the classes have approximately equal total values of the attribute 
“Population” or “Arable land area”. This kind of classification supports exploratory analysis of 
relationships between the attribute used for the classification and the distribution of the phenomenon 
whose quantity is represented by the additional attribute. The approach may be especially useful 
when the distribution of the phenomenon is very unequal, with many data items having zero or low 
quantities and quite a few items having larger quantities. With such a distribution, standard statistical 
analysis of the relationships may be problematic. We demonstrate the potential of the approach by 
analysing data referring to a set of spatially distributed people (patients) in relationship to 
characteristics of the areas in which the people live. 

Introduction 

Data classification (Slocum et al. 2013, Chapter 4; Kraak and Ormeling 2021, Section 7.3) involves 
organising data items into groups, called classes, according to some principle, for example, in the basis 
of values of one or more attributes, or according to geographic location, or time reference. The most 
frequently used type of classification is based on dividing the range of values of a numeric attribute 
into intervals, so that each of the data classes corresponds to one interval and consists of data items 
with the values of the attribute lying in this interval. The intervals defining the classes are called class 
intervals. There are many methods of defining class intervals. The most common methods, according 
to Slocum et al. (2013), include equal intervals, quantiles, mean-standard deviation, natural breaks, 
nested means, and optimal. The latter, given a certain measure of diversity, minimises the diversity 
within the classes and maximises it between the classes. Kraak and Ormeling (2021) additionally 
consider arithmetic series, geometric series, and harmonic series. The choice of an appropriate 
method of classification depends on the properties of the data (particularly, the distribution of the 
attribute values) and the purpose of the classification. 

One of the common purposes of classification is to simplify visual representation of data, as is done in 
choropleth maps. Another purpose, which is in the focus of our paper, is to support exploratory data 
analysis. Organising data items in groups is a generic analytical technique that not only helps analysts 



to deal with large data amounts but also facilitates abstractive perception and cognition by hiding 
excessive details and enabling an overall view of the data. 

In this paper, we consider the use of data classification for the task of exploring relationships between 
values of thematic attributes. Let us illustrate it by an example. We have data describing the Lower 
Layer Super Output Areas (LLSOA) of London, which are small units of territory division used for 
collecting census and other statistical data. The data contain values of a numeric attribute “% BAME”, 
which represent the percentages of non-white (i.e., Black, Asian, and minority ethnic) residents in the 
population of the areas (data source: UK Census 2011). Besides, we have data specifying the 
geographic locations of the London pubs, from which we count the number of pubs in each area (data 
source: OpenStreetMap). We want to know how the geographic distribution of the pubs is related to 
the ethnic structure of the population, in particular, to the proportions of non-white residents. As can 
be seen in Fig.1, a scatterplot where the districts are represented by dots positioned according to the 
values of the attributes “% BAME” and “Number of pubs” does not show us the character of the 
relationship clearly enough. It is because most of the districts have no or very few pubs. It is also hard 
to understand the relationship when using a map that shows the variation of the proportions of non-
white people over the territory and the distribution of the pubs (Fig.2).  

 

Figure 1. A scatterplot may not show the relationship between two attributes well enough when there 
are many data items with very low values of one of the attributes1. 

                                                           
1 All illustrations in this paper are screenshots made with the software system V-Analytics, which is publicly 
available at URL http://geoanalytics.net/V-Analytics/.  



 

 

Figure 2. Classified choropleth maps represent the percentages of non-white population by statistical 
districts of London. In the upper image, the data are divided into quintiles, in the lower image – into 
deciles.  Blue semi-transparent circles show the locations of the pubs in London. 

 



Classification of the districts according to the values of the attribute “% BAME” helps us to approach 
the problem. We divide the data into quantiles (i.e., classes with approximately equal number of 
members) based on the values of this attribute and look how the pubs are distributed among the 
quantiles. In the upper map in Fig.2, the districts are divided into quintiles (i.e., each class includes 
about one fifth of all districts), and in the lower map into deciles (i.e., each class includes 
approximately one tenth of the districts). The distributions of the pubs among the classes are shown 
in the tables in Fig.3. In each table, we can see the number of the districts in each class, the total count 
of pubs per class, and the mean number of pubs per district of each class. The pub counts and the 
means tell us that there are notably fewer pubs in the districts with high percentages of non-white 
residents than in the remaining districts. More precisely, we see a non-linear relationship between 
the percentage of BAME and the number of pubs in a district. The number of pubs in the districts with 
the lowest percentages of non-white residents is somewhat smaller than in the groups of districts 
starting from the second quintile (Fig. 3, left) and the second decile (Fig. 3, right). Except for these 
lowest classes, the classes of districts with low and medium proportions of non-whites have relatively 
high numbers of pubs, and there is a notable decreasing trend in the number of pubs as the 
proportions of non-whites exceed 50% and further increase. By varying the number of data classes, 
we check and refine our observations. We see that the decreasing trend for the proportions of BAME 
exceeding 50% preserves and becomes even more prominent when we divide the data into more than 
10 classes. This increases our confidence concerning the relationship observed. As the next step of the 
analysis, it is appropriate to confirm our observations by means of statistical analysis of the difference 
between the districts with the high percentages of BAME and the rest. 

  

Figure 3. Table displays with coloured bars in the cells show how the pubs are distributed among the 
quintiles (left) and deciles (right) of the districts with respect to the proportions on non-white 
residents. 

This example demonstrates that data classification can be a useful instrument for exploration of 
relationships between attributes. A similar example of analysis was described in more detail by 
Andrienko et al. (2020). 

Apart from dividing data into quantiles, it may be meaningful to divide the data so that a certain set 
of objects or some quantitatively measured phenomenon is approximately equally distributed among 
the classes. For example, geographic districts can be classified so that the classes have approximately 
equal areas or amounts of population. Such a division may be desirable when the task is to explore 
the relationship between the attribute used as the basis for the classification and attributes that may 
be related to the objects or phenomenon distributed over the classes. For example, division of the 
London districts into equal-area classes may be useful for exploring the relationship between the 
proportions of non-white population and the amounts of green area, and division into equal-
population classes is meaningful when the second attribute is the income per capita. 



Earlier, Andrienko and Andrienko (2004) proposed a visualisation-based interactive approach to 
defining classes with approximately equal distribution of some quantity. In this paper, we propose an 
algorithm for obtaining such divisions in an automated way, which may be beneficial when the analysis 
process involves repeated data classifications with varying the number of classes or the attribute used 
as the basis for the classification. For such an analysis, interactive manual creation of data classes may 
be too laborious and time-consuming. Besides, the previous authors mostly focused on describing the 
method to define data classes but not so much on the use of the resulting classes in further data 
analysis. 

The contribution of our paper is two-fold. First, we introduce the method for automated division of 
data into classes based on values of a numeric attribute AC so that a given quantity Q is approximately 
equally distributed among the classes. Second, we show by example how the classes obtained in this 
way can be used for studying the relationship between the attribute AC and another attribute AX. 

After a brief discussion of the related work concerning data classification, we present our approach in 
general terms and then demonstrate utilisation of it in a case study with data describing geographically 
distributed patients. The goal of the analysis is to investigate the relationships of characteristics of the 
patients to socio-demographic characteristics of the underlying territory. 

Related work 

Starting from Jenks’ (1977) pioneering work on defining class intervals for optimizing homogeneity of 
the data classes, a number of approaches have been developed by cartographers and geovisualisation 
researchers. Slocum et al. (2013) present and discuss the multitude of common methods for data 
classification based on values of a numeric attribute and the problem of choosing an appropriate 
method. Egbert and Slocum (1992) were the first to implement an interactive tool for data 
classification to support exploratory analysis of spatial data with the use of choropleth maps. Further 
implementations combined interactive definition of class breaks with aggregation of attributes of 
interest for the classes (Andrienko and Andrienko 1999) and computation of indicators of the 
statistical optimality (Andrienko et al 2001). It was proposed to use a cumulative frequency curve for 
informed interactive selection of class intervals, and the idea was generalised to representing not only 
the numbers of the geographical objects being classified but also the corresponding sums of values of 
a quantitative attribute, such as population or area (Andrienko and Andrienko 2004); see an example 
in Fig.4, left. The authors mentioned that generalised cumulative curves can be used for interactive 
definition of classes of geographic units with approximately equal total population or covered area, as 
shown in Fig.4, right. However, it was not discussed how such classes can be used in further data 
analysis, in particular, for exploration of relationships between attributes. 

  

Figure 4. A cumulative curve display for supporting interactive data classification. The horizontal axis 
represents the value range of a numeric attribute (% of children 0-14 years old) used for the 
classification. The value range is divided into 3 intervals. In black is the cumulative frequency curve, in 



purple the cumulative population curve, and in blue the cumulative area curve. On the left, the class 
breaks make classes with approximately equal counts of objects; on the right, the classes have 
approximately equal total population. 

In the process of data analysis, it may be necessary to perform data classification multiple times by 
varying the number of classes or using different attributes as the classification basis. Manual work on 
defining classes by means of interactive tools may require much time of the analyst. It is generally 
desirable to save the valuable time of human analysts by supporting data analysis wherever possible 
by computational techniques. Particularly, automation of the data classification process saves the 
analyst’s time that would be required for interactive classification. 

We build on the work by Andrienko and Andrienko (2004), and we extend it by, first, proposing an 
algorithm for automated classification and, second, showing how resulting data classes can be used 
for exploration of relationships between attributes. 

The classification method 

Let B (base of the distribution) be a set of objects characterised by a numeric attribute AC, which is 
used for the classification of the objects, and let Q be another numeric attribute representing some 
quantities associated with the objects of B. The goal is to divide the range of the attribute AC into class 
intervals so that the corresponding object classes have approximately equal total quantities of Q, i.e., 
sums of the values of Q. The key idea of the algorithm is to order the data records describing the 
objects according to the values of AC and then compute cumulative sums of the values of attribute Q 
along the ordering. The class breaks are chosen so that the sums of the values of Q between the breaks 
do not exceed the total sum of the values of Q divided by the desired number of classes. The details 
are provided in the following pseudo-code. 

 

Algorithm: Define class intervals for attribute AC equalizing the distribution of the quantity Q. 

Inputs: data <vC
i,v

Q
i>, i=1..N, where vC

i is a numeric value of attribute AC, vQ
i is a positive 

numeric value of attribute Q; desired number of classes K  
Output: breaks[] – array of K-1 class interval breaks 
begin 
 for j := 1 to K-1 breaks[j] := null  
 Sort the data so that vC

i+1 >= vC
i, i=1..N-1 

 totalQ := sum(vQ
i), i=1..N 

 currentSum := 0 
 k := 1   
 for i := 1 to N while k < K-1 
  currentSum := currentSum + vQ

i 
  if (currentSum > totalQ /K)  
   breaks[k] := (vC

i-1  + vC
i) / 2 

   k := k+1 
   currentSum:= vQ

i 
return breaks 

end 

 

This pseudo-code can be explained as follows. Initially, all class breaks are set to null. First, the data 
records are sorted in the order of increasing values of the attribute AC. Next, the sum of the values of 
the attribute Q from all records is computed and assigned to the variable totalQ.  Then, the algorithm 
goes along the ordered sequence of records one by one. In each step, it adds the value of the attribute 
Q from the current record to the variable currentSum. When the value of the variable currentSum 
exceeds the value of totalQ divided by the desired number of classes K, it is the signal that there must 



be a class break between the current record and the previous record, so that the previous record goes 
to the lower class and the current record to the next class. Hence, a new class break is generated by 
taking the middle value between the values of the attribute AC in the previous record and in the 
current record. After that, the variable currentSum gets the value of the attribute Q from the current 
record and thereby starts accumulating the values of Q for the next class. The algorithm then proceeds 
to the  following record in the sequence. The algorithm terminates when all K-1 class breaks have been 
defined. 

It is usually not possible to achieve an absolutely equal division of the total quantity totalQ among K 
classes, i.e., such that the sum of the values of Q in each class exactly equals totalQ/K. If the division 
is just slightly unequal, it may not be too problematic for subsequent data analysis. When the classes 
are strongly unequal, it may be reasonable to try divisions with a larger or smaller numbers of classes. 

In the following, we shall show by an example how data classes defined using the proposed method 
can be used for analysing relationships between the classification attribute AC and other thematic 
attributes. 

Case study 

The data we analyse describe the appointments of patients to clinics for testing the existence and 
severity of symptoms of the obstructive sleep apnoea condition (OSA), which is a potentially serious 
health disorder. Tests are done using special devices, called oximeters, given to patients for taking 
measurements at home. A patient that needs to be tested gets an appointment to one of multiple 
sites (clinics) distributing oximeters. A test requires two journeys to a site, first for picking up an 
oximeter and then for bringing it back. It happens quite often that patients do not attend their 
appointments. It may happen even several times with the same patient. Health care researchers 
hypothesised that patients may be more likely to skip their appointments when they live far away 
from the clinic they need to travel to. However, a previous study ascertained that the no-shows were 
not related to the patients’ distances from the sites where they had appointments (Lee et al. 2019).  

It was also checked whether the distance to a clinic might affect the patients’ inclination to undergo a 
test. It was conjectured that people living far away from the distribution sites may be unwilling to 
spend their time and money travelling when they do not feel really serious problems. However, this 
hypothesis was also not confirmed: no correlation was found between the distance to the clinic and 
the severity of the patient’s condition according to both the objective result of the OSA diagnosis and 
the patient’s subjective estimation. 

The study described in this paper aimed at checking whether the patients’ behaviours could be related 
to the living conditions, such as the level of poverty and unemployment, in their communities. We 
used official statistics reporting the indices of population deprivation by the statistical districts called 
lower layer super output areas (LLSOA). This is the lowest level of statistical data aggregation in the 
UK; hence, the corresponding deprivation data have the highest spatial resolution and accuracy from 
all openly accessible official statistics for the UK. In the subset of the data covering our study area (see 
Fig. 5), the population of the LLSOA varies from 937 to 5,438 inhabitants, with the mean 1,734, median 
1,619, lower and upper quartiles 1,441 and 1,906, respectively, and 90th percentile 2,313. These 
numbers demonstrate that the districts are quite small in terms of population amounts. 



 

Figure 5. The study area with the spatial distribution of the patients represented by the counts of the 
patients per 10,000 residents of the districts (LLSOA). The counts are visually encoded by proportional 
sizes of the circle symbols coloured in red. 



 

Figure 6. The districts of the study area are painted according to the values of the index of multiple 
deprivation (IMD). The value range is divided into 10 equal-length intervals, which are visually encoded 
by colours from light yellow to dark red. The dots in light blue show the locations of the clinics. 

Figures 5 and 6 show the study area, which is located in the east of England, north of London. The map 
in Fig. 5 represents the spatial distribution of the patients’ homes. In order to protect the privacy of 
the individual location data, they have been aggregated by the LLSOA. The map shows the counts of 
the patients, including those who did not attend the test (referred to as no-shows), per 10,000 
residents of the districts. It can be seen that the distribution of the patients is very uneven. The 
patients are densely concentrated in relatively few areas and sparsely distributed over the remaining 
areas. The map in Fig. 6 shows the variation of the index of multiple deprivation (IMD), which is a 
composite attribute taking into account the income, employment, education, health, and other 
aspects of people’s life. The LLSOA data also include the deprivation values for each of these aspects. 

While it is possible to attach the deprivation scores of the areas to the records of the patients, it is not 
reasonable to look for direct correlations between the patients’ individual data and the data of the 
areas in which they live. There can be no correlations at the individual level due to the highly uneven 
distribution of the patients, such that a few areas include a large number of patients with very diverse 
health characteristics. 

The approach we use for revealing possible relationships between the area deprivation scores and the 
patients’ health conditions and behaviours is based on the use of data classification. The idea is to 
divide the set of areas into classes according to the deprivation scores so that the patients are 
approximately equally distributed among the classes. Since the classes have almost equal numbers of 



patients, they are comparable in terms of the characteristics of the patients. We can thus look whether 
and how the subset of patients living in poorer areas differs from the subset of patients living in 
wealthier areas. 

We used the patients’ data to compute for each output area the total number of patients, the number 
of no-shows, the counts of the patients with hypertension, diabetes, and those who smoke, and the 
counts of the patients by the quintiles of the attributes Age, BMI (body mass index), and ESS (Epworth 
Sleepiness Scale Score) (Johns 1991). The latter is the self-estimated degree of sleepiness expressed 
as a number from 0 (no sleepiness) to 24 (extremely severe). The main test result is an objective 
measure of the severity of OSA, that is the value of the oxygen desaturation index (ODI) measured by 
the overnight oximetry at home. There are four categories for ODI, normal, mild, moderate, and 
severe. So, for each area, we also obtained the counts of the patients by these four ODI categories. 

 

 

Figure 7. The output areas are classified according to the IMD (index of multiple deprivation) scores 
so that the patients are approximately equally distributed among the classes. The bar chart below the 
map shows the number of the patients in each class of the areas. 

The map in Fig.7 shows the output areas classified according to the values of the attribute IMD (index 
of multiple deprivation) so that the patients are approximately equally distributed among the five 



classes. In terms of our notation, B is the set of output areas, AC is the IMD score, and Q is the number 
of the patients. The area classes are represented by the colours from dark blue for the lowest interval 
of the IMD values to dark red for the highest value interval. We use a diverging colour scale (Harrower 
and Brewer 2003) to distinguish between below-average and above-average values (encoded in blue 
and red, respectively). The bar charts in figures 8 and 9 represent the summary statistics of the 
patients and no-shows by the area classes. The bars are painted in the same colours as the areas in 
the map. The bar lengths in each row are proportional to the total counts of the patients from a 
particular category by the area classes. The first row in Fig. 8 presents the counts of the no-shows. 

 

Figure 8. Counts of no-shows and special categories of patients by the classes of the output areas. 

 

Figure 9. Counts of the patients by the area classes and value intervals of the attributes ODI (oxygen 
desaturation index), ESS (self-estimated sleepiness), age, and BMI (body mass index). 

The statistics presented in figures 8 and 9 indicates the existence of notable differences between the 
classes of the areas in terms of the no-shows and the characteristics of the patients. Thus, the number 
of no-shows is higher in the areas with the larger IMD scores, i.e., in the poorer areas. In the poorest 
area class, the number of the patients with the normal level of ODI is much smaller and the number 
of the patients with the severe ODI level is higher than in the wealthier area classes. The statistics of 
the self-estimated sleepiness (ESS) supports the hypothesis that the patients living in poor areas are 



less inclined to go for a test until they feel that they have a serious problem. Specifically, for the class 
of the districts with the highest deprivation levels (dark red), the counts of the patients with low to 
average values of ESS are notably smaller than the counts of patients with high values of ESS. In 
addition, when we compare the numbers of the patients with the highest values of ESS across the 
classes of the districts, we see that the top class has prominently the highest number of such patients. 

Apart for the statistics of the no-shows, ODI, and ESS, differences exist also in terms of the attributes 
“diabetes”, “smoking”, “age”, and “BMI”. In the poorer areas, there are more patients with diabetes, 
overweight (high BMI), and those who smoke, whereas the number of elderly people who take the 
test is smaller than in the other area classes. Similar observations have been done regarding specific 
deprivation indexes, such as income, employment, education, health, and other. 

Having detected these differences, we checked their statistical significance. Specifically, we compared 
the class of the most deprived districts against the class of the least deprived districts. For interval 
data comparisons (i.e., ODI, ESS and BMI), we used two-tailed independent sample (homoscedastic) 
t-tests. For ratio data comparisons (i.e., no-shows, smoking, diabetes, and referrals per 10,000 
inhabitants), we used z-scores test and calculated p values from the resulting z scores. According to 
the tests, the differences between the lowest and highest classes are statistically significant for the 
percentages of the no-shows (p=0.001), ODI (p=0.011), ESS (p=0.001), BMI (p<0.00001), the number 
of smoking patients (p<0.00001), and the number of patients with diabetes (p=0.0002). Besides, a 
significant difference exists in the number of referrals (i.e., people who wished to be tested) per 
10,000 residents of the areas (p=0.005); namely, poorer areas have fewer referrals. Since almost all of 
the comparisons were statistically significant, it was not necessary to apply formal methods for 
correction of p values. 

Hence, by means of the equal-distribution data classification, we were able to reveal the relationships 
between the behaviours of the patients and the degree of deprivation in the areas where they live. 
Most of the detected relationships have been statistically confirmed. We would like to make a special 
note that these relationships do not manifest as correlations at the level of individual patients’ data 
due to the extremely uneven spatial distribution of the patients. Given the particular properties of the 
data under analysis, the use of the equal-distribution data classification for the exploratory analysis 
proved to be very helpful. 

Discussion and conclusion 

The principal possibility of the equal-distribution data classification was mentioned long ago 
(Andrienko and Andrienko 2004). However, the authors did not discuss in detail how the resulting 
classification can be used in further data analysis, in particular, for exploration of relationships 
between attributes. Our paper complements the previous work by demonstrating an example of the 
use of equal-distribution data classes for exploration of the relationships between the attribute that 
served as classification bases and other attributes available in the data. The essence of the approach 
is to summarize the data by the classes and detect significant differences between the classes in terms 
of the attributes whose values have been summarised.  

Our work presented in this paper was motivated by a practical need to understand relationships 
between two or more space-based phenomena. Our study, which was performed within an EU-funded 
research project Track&Know, has shown that equal-distribution classification may be especially 
helpful when there is a phenomenon with a highly uneven distribution over the (spatial) base. In such 
cases, other approaches to detecting relationships may not work. 

While equal-distribution data classification can be done interactively using a generalised cumulative 
curve display, as was proposed in the earlier work, it is quite time-consuming when the classification 
needs to be done multiple times for different classification attributes and/or different numbers of 
classes. Therefore, we have devised an algorithm enabling automated classification. 



We believe that our work, including the algorithm of the equal-distribution classification and 
demonstration of the way of utilising it in data analysis, can be useful for researchers and practitioners 
in spatial data analysis. We also think that the method may have wider use, as it is applicable not only 
to spatially distributed phenomena but also to phenomena distributed over any kind of common base 
that can be represented as a set of objects with attributes reflecting the distributions of the 
phenomena. 

On the other hand, we deem it necessary to note that we do not propose the use of equal-distribution 
classification as a brand-new approach superior to the state-of-the-art methods for geographic data 
analysis. We would like to stress that this is a merely exploratory technique intended to support visual 
detection of possible presence of relationships between attributes. Once being detected, relationships 
need to be tested using statistical methods, as we did in our case study. Explorations similar to the 
presented one can be done using existing software tools, such as GeoDa2 (Anselin and Rey, 2014), 
while explorers can benefit from the proposed way to automate the generation of equal-distribution 
data classes. 

It is also appropriate to note the general limitations of data classification as a method to represent 
data visually. Such a representation may seriously distort the perception of the data distribution. Thus, 
classification masks the differences between the extreme values and the rest. It also exaggerates small 
differences between data items that happened to be put in different classes but can mask much larger 
differences between data items put in the same class. These kinds of distortions can be noticed by 
comparing the maps in Fig. 7 and Fig. 6. However, the limitations of classification do not deny its 
usefulness when it is utilised cautiously and purposefully. The way of obtaining classes, the class 
boundaries, and the sizes of the classes are very important pieces of information that need to be taken 
into account in interpreting data visualisations and in data analysis.  
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