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Abstract—Movement data (trajectories of moving agents) are hard to visualize: numerous intersections and overlapping between

trajectories make the display heavily cluttered and illegible. It is necessary to use appropriate data abstraction methods. We suggest a

method for spatial generalization and aggregation of movement data, which transforms trajectories into aggregate flows between

areas. It is assumed that no predefined areas are given. We have devised a special method for partitioning the underlying territory into

appropriate areas. The method is based on extracting significant points from the trajectories. The resulting abstraction conveys

essential characteristics of the movement. The degree of abstraction can be controlled through the parameters of the method. We

introduce local and global numeric measures of the quality of the generalization, and suggest an approach to improve the quality in

selected parts of the territory where this is deemed necessary. The suggested method can be used in interactive visual exploration of

movement data and for creating legible flow maps for presentation purposes.

Index Terms—Movement, generalization, aggregation, information visualization, geovisualization, visual analytics.

Ç

1 PROBLEM STATEMENT

THIS paper addresses the issues of visualization of large
amounts of movement data, that is, records about the

spatial positions of some moving agents (such as people,
vehicles, or animals) at different time moments. The main
components of a position record are <agent identifier, time,
spatial position>. A time-ordered sequence of positions of
one agent is called trajectory.

Movement data are generated in vast amounts by means
of current tracking technologies. A straightforward visua-
lization of trajectories as lines or traces on a map or in a
space-time cube [18], [19] is not appropriate for massive
movement data: such a display is illegible because of
cluttering and overlapping of the symbols. It is necessary to
apply data abstraction, which is defined in [6] as the process
of hiding detail of data while maintaining their essential
characteristics. An analogous concept, called cartographic
generalization [21], [25], exists in cartography and geo-
graphic visualization. From the existing methods of carto-
graphic generalization, the method most appropriate for
our purposes is aggregation, when several items are put
together and represented as a single unit. In our case, the
items would be trajectories or fragments of trajectories.
Aggregation reduces the number of items, which is very
helpful in case of numerous trajectories. At the same time, it
does not just omit some items, but transforms the original
items into a smaller number of constructs that summarize
the properties of the original items.

Widely known examples of cartographic representation
of aggregated movements of multiple agents are historical

maps showing the movements of tribes and armies by arrow
symbols. This kind of map is called flow map [23], [25]. The
most famous flow map is the representation of Napoleon’s
Russian campaign of 1812 by Minard [28]. The map portrays
several characteristics of the movement: the route, the
locations of the army at different times, the directions of
the movement, the change of the size of the army (i.e., the
number of moving agents), splitting into parts, and rejoining
of the parts. However, this and similar representations deal
with coherent movement of multiple agents, i.e., the case
when the agents are moving together as a single unit. This
technique is not applicable to independently moving agents,
such as cars or pedestrians moving over a city.

The term flow map is also used for maps where arrow
symbols represent only the numbers of items or amounts
of goods moving between some places, but not the routes
of the movement [26], [27]. Given a set of predefined
places, a flow map is built as follows: For each pair of
places, the number of trajectories originating in the first
place and ending in the second one is counted. The count
so obtained is represented by an arrow symbol directed
from the first to the second place with the thickness or
brightness proportional to the count. To improve the
legibility of the resulting display, the symbols representing
minor amounts are typically omitted. The algorithm for
automated design of flow maps suggested in [23] mini-
mizes crossings between symbols.

The idea of flow map can be extended to take into
account not only the starts and ends of the trajectories, but
also the intermediate positions along the routes. For this
purpose, the trajectories are divided into segments. Two
methods for division are possible: by time intervals and by
visits of the places. An example of time-based division can
be seen in the representation of the movements of tourists in
New Zealand by Drecki and Forer [8] (reproduced in [2]).
The trajectories of the tourists were divided into segments
corresponding to the days of visit, starting from the arrival

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010 1

. The authors are with Fraunhofer Institute IAIS—Intelligent Analysis and
Information Systems, Schloss Birlinghoven, Sankt-Augustin D-53754,
Germany. E-mail: gennady.andrienko@iais.fraunhofer.de.

Manuscript received 24 June 2009; revised 21 Sept. 2009; accepted 4 Oct.
2009; published online 16 Feb. 2010.
Recommended for acceptance by A. MacEachren.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2009-06-0127.
Digital Object Identifier no. 10.1109/TVCG.2010.44.

1077-2626/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society



to New Zealand. The representation consists of six parallel
planes, shown in a perspective view, with a map of New
Zealand depicted on each plane. The planes correspond to
the days of the tourists’ travel. The movements of the
tourists are represented as lines connecting the locations of
the major tourist destinations on successive planes. The
brightness of a line corresponds to the number of people
that moved from its origin location (on the upper plane) to
the destination location (on the lower plane) between the
days corresponding to the upper and lower planes.

When time-based division is used, the results of the
aggregation should be visualized in such a way that the
aggregate moves corresponding to different time intervals
are differentiated. Drecki and Forer do this by involving an
additional display dimension. Another possible approach is
a series of maps (“small multiples”), each showing the
movements during one time interval.

In the place-based division, the sequence of visited places
is found for each trajectory, and the trajectory is divided into
segments going between successive places. Then, the
segments with coinciding places of starts and places of ends
are put together and represented as aggregate moves
between these places.

All these approaches assume that there is a predefined set
of relevant places. In our research, we have been looking for a
way to define suitable places for aggregating movement data
and building flow maps in cases when positions of moving
agents are specified only by numeric coordinates lacking
any semantics. We have developed a computational method
that uses these coordinates to partition the territory into
suitable areas, so that flow maps built on the basis of these
areas can adequately portray essential spatial characteristics
of the movement. The design of flow maps, however, is not
our focus; our method is meant to prepare input data for
flow maps.

In Section 2, we shall demonstrate several examples of
data generalizations obtained by means of the method we
have developed. The method itself will be described in
detail in Section 3. In Section 4, we shall talk about the
quality of the generalization: how it can be measured and
improved. In Section 5, we shall briefly discuss the possible
uses of our method, which are not limited to building static
flow maps. In Section 6, we shall give an overview of the
related literature and then conclude in Section 7.

2 EXAMPLES OF MOVEMENT GENERALIZATION

In brief, we suggest a method that extracts specific points
from the trajectories, groups them by spatial proximity, and
uses the centers of the groups as generating points for
Voronoi tessellation of the territory. The resulting Voronoi
cells are used as the places for aggregating movement data
and building flow maps. The degree of the generalization
depends on the sizes of the cells which, in turn, depend on
the spatial extents of the point groups. The desired spatial
extent (radius) is a parameter of the method.

2.1 Example 1: Cars in Milan

In this example, we use a data set collected by GPS-tracking
of 17,241 cars in Milan (Italy) during 1 week. The data set
consists of more than 2 million records, each including car

identifier, time stamp (date and time of the day), and
geographical coordinates. The time intervals between the
records of the same car are irregular, mostly ranging from
30 to 45 seconds. The data have been kindly provided by
Comune di Milano (Municipality of Milan). The whole data
set is too big for processing in RAM; therefore, we shall use
a subset consisting of about 6,200 trajectories from a 4-hour
time interval. Fig. 1a demonstrates this set of trajectories
represented on a map by linear symbols with special
markers for the start and end positions of the trajectories:
tiny hollow and filled squares, respectively. The lines are
drawn on the map with 10 percent opacity, which gives an
idea about the relative density of the movement in different
places and about the topology of the road network in Milan.

Fig. 1b represents the result of aggregating the trajec-
tories by our method (radius ¼ 3;000 m). For the sake of
legibility, the screenshots do not include the boundaries of
the Voronoi cells that have been used for the aggregation.
The special “half-arrow” symbols represent movements
between the cells in two opposite directions. This technique
has been borrowed from Tobler’s maps [26], [27]. The starts
and ends of the symbols lie on the lines connecting the
generating points of the cells. The symbols are slightly
shorter than the lines to reduce intersections. The widths of
the symbols are proportional to the numbers of the
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Fig. 1. (a) The original 6,187 car trajectories are drawn with 10 percent
opacity. (b) The trajectories have been aggregated; all flows are
visible. The maximum arrow width corresponds to 253 trajectory
segments. (c) The same as Fig. 1b, but only the flow symbols
representing 50 or more trajectory segments are visible. (d) A lower
degree of abstraction of the same data. The maximum arrow width
corresponds to 255 trajectory segments.



trajectory segments they represent. The circular symbols
stand for trajectories that fully fit inside one cell. In Fig. 1c,
the symbols corresponding to less than 50 trajectory
segments are hidden; hence, only the major flows are
visible. The background map images in all maps in the
paper have been taken from the Open Street Map Web
server (www.OpenStreetMap.org).

A good correspondence between the original data and
the generalized representation can be noted. Thus, Fig. 1a
displays a high intensity of the movement on the peripheral
belt roads. The same information can be gained from the
generalized view (Figs. 1b and 1c), which contains thick
arrows (meaning intensive movement) positioned closely to
the belt roads. The shapes formed by these arrows even
approximate the shapes of the roads. The radial flows in the
aggregated representation are positioned closely to the
busiest roads connecting the central part with the periph-
ery. In comparison to Fig. 1a, the generalized view conveys
additional information about the relative intensities of
movements in opposite directions.

A comment should be made that our automatically
generated flow maps are by no means perfect in terms of
map design. Thus, a more sophisticated approach presented
in [23] produces esthetically more pleasing maps. Unfortu-
nately, it is limited to showing movements originating in
one or two places. We do not know any good automatic
method for flow map design that would cope with
numerous origins and numerous destinations. The topic
of our work is not the design of flow maps, but partitioning
of the territory and aggregation of movement data, which
precede the map design. The simple visualization technique
that we use is sufficient for demonstrating the feasibility of
our approach.

Fig. 1d demonstrates the possibility of varying the level
of data abstraction. Here, the territory of Milan has been
divided into smaller compartments than in Figs. 1b and 1c
(radius ¼ 1;500 m). The resulting generalization is finer
when consistent with the previous, coarser generalization.

Fig. 2 demonstrates very low degrees of data abstraction,
which are achieved with the parameter values 500 m (Fig. 2b)

and 100 m (Fig. 2c). These degrees of abstraction are suitable
for large-scale maps, from which only small fragments can
be used in the paper. On the contrary, Fig. 3 demonstrates
very high degrees of abstraction achieved with parameter
values 6 km (Fig. 3a) and 10 km (Fig. 3b). Although the
generalization shown in Fig. 3b may seem excessive, the one
shown in Fig. 3a can still be quite useful. The information
conveyed is consistent with Fig. 1c.

2.2 Example 2: Roe Deer

In this example, we use a data set with positions of 74 roe

deer collected over a period of about 5 years. The track

durations range from 5 to 1,077 days. The data have been

kindly given to us by the scientists from the Bavarian

National Park. From the representation of the original

trajectories of the animals shown in Fig. 4, it can be seen that

the movements mostly occurred within relatively small

areas. There was not much movement between the areas.

The aggregated representation of the data, which is overlaid

on the lines of the trajectories, reflects these properties of the

data. This example shows that the suggested method of

generalization is applicable not only to movements con-

strained by a street network, but also to network-free

movements such as movements of wild animals.
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Fig. 2. (a) An enlarged fragment of the map of Milan. The trajectories are

shown in black with 10 percent opacity. (b) and (c) Generalized

representations of the trajectories generated with the values of the

parameter 500 and 100 m, respectively.

Fig. 3. The Milan car trajectories have been generalized using the

parameter values (a) 6 and (b) 10 km.

Fig. 4. Blue: the original trajectories of 74 roe deer, shown with 10 percent

opacity. Red: the trajectories have been generalized to flows, which are
superimposed on the trajectories. The maximum arrow width corre-
sponds to 607 trajectory segments.



3 DESCRIPTION OF THE METHOD

Our method for generalization of movement data consists
of the following major steps:

1. extract characteristic points from the trajectories;
2. group the extracted points by spatial proximity;
3. extract the centroids (average points) of the point

groups and use them as generating points for
Voronoi tessellation;

4. use the resulting Voronoi cells as places for place-
based division of the trajectories into segments;

5. for each ordered pair of places, aggregate the
trajectory segments starting in the first place and
ending in the second place;

6. measure the quality of the generalization and
improve it if necessary.

The first five steps are described in this section, while the
final step will be covered in Section 4.

3.1 Extracting Characteristic Points of Trajectories

Characteristic points of trajectories include their start and
end points, the points of significant turns, and the points of
significant stops (pauses in the movement). If a trajectory
has long straight segments, it is also necessary to take
representative points from these segments. Otherwise,
straight segments will not be taken into account in choosing
generating points for Voronoi cells and, as a result, may be
inadequately represented by flows (i.e., the flows represent-
ing these segments may deviate too much from the
directions of the segments).

We use the following algorithm to extract characteristic
points from a trajectory:

Algorithm 1. Extracting characteristic points from

a trajectory

Given:

- Trajectory T ¼ ðxi; yi; tiÞ; 1 � i � n; n � 2; ti < tiþ1 for

8i < n ðxi and yi are spatial coordinates and ti is time);

- MinAngle—the minimum angle between the directions

of consecutive trajectory segments to be considered as
a significant turn;

- MinStopDuration—the minimum time spent in

approximately the same position to be treated as

a significant stop;

- MinDistance—when the distance between two

consecutive points is below this value, the points are

treated as approximately the same position;

- MaxDistance—the maximum allowed distance between
consecutive characteristic points extracted from the

trajectory (i.e., if the trajectory has a straight segment

with the length more than this value, representative

points must be taken such that the distances between

them do not exceed this value).

Description of the algorithm:

1: let C ¼ fðx1; y1; t1Þg; let i ¼ 1;

2: let j ¼ iþ 1;
3: if j � n then go_to 9; end_if;

4: compute dSpacei;j ¼ spatial distance((xi; yiÞ; ðxj; yj));

5: if dSpacei;j � MaxDistance then

/� the jth point is a representative point from a long

segment �/

let C ¼ C [ fðxj; yj; tjÞg; let i ¼ j; go_to 2;

end_if;

6: for k ¼ jþ 1 to n

compute dSpacej;k ¼ spatial distanceððxj; yjÞ; ðxk; ykÞÞ;
if dSpacej;k � MinDistance then go to 7; end if ;

end_for;

go_to 9; /� no points far enough from the jth point �/

7: If k > jþ 1

/� there are points between the jth and kth points
whose spatial positions are close to the jth point �/

then

compute dTime ¼ tk�1 � tj

if dTime � MinStopDuration then

/� the j-th point is a significant stop point �/

let C ¼ C [ fðxj; yj; tjgÞ; let i ¼ j; let j ¼ k; go_to 3;

else

/� compute the average spatial position �/
compute (xave; yaveÞ:

xave ¼ get meanðxpÞ; yave ¼ get meanðypÞ;
j � p � k� 1;

/� find the closest point to the average position �/

find m; j � m � k� 1 : spatial distanceððxm; ymÞ;
ðxave; yaveÞÞ � spatial distanceððxp; ypÞ;
ðxave; yaveÞÞÞ, j � p � k� 1;

/� this will be a representative point among the
points from jth to ðk� 1Þth �/
let j ¼ m;

end_if;

end_if;

8: compute

aTurn ¼ angle between vectorsð<ðxi; yiÞ; ðxj; yjÞ>;
<ðxj; yjÞ; ðxk; ykÞ>Þ;

if aTurn � MinAngle then

/� the j-th point is a significant turning point �/

let C ¼ C [ ðxj; yj; tjÞ; let i ¼ j; let j ¼ k;

else

let j ¼ jþ 1; /� skip the jth point �=

end_if;

go_to 3;

9: let C ¼ C [ fðxn; yn; tnÞg; =� add the end point to C �=

10: return C;

In Fig. 5, Algorithm 1 has been applied to the same
trajectory with three different settings of the parameters
MinDistance and MaxDistance. Each of the horizontal
sections labeled A, B, and C contains three panels. The
larger panel on the left shows the whole trajectory as a line
and the extracted characteristic points as small semitran-
sparent circles. The small panels on the right show two
fragments of the image enlarged; these are marked in the
larger panel by boxes. The fragments demonstrate the effect
of the parameter MinDistance. The role of this parameter is
to omit minor fluctuations of a position. The parameter
MaxDistance affects the positions and numbers of repre-
sentative points taken from trajectory segments with no
significant turns, as can be seen from comparing the big
image in panel C with those in panels A and B.

Fig. 6 shows the characteristic points extracted from the
6,187 trajectories of cars in Milan presented in Fig. 1 and
from the 74 trajectories of roe deer presented in Fig. 4. A total
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of 36,328 points were extracted from the Milan data and
35,113 points from the roe deer data. In both cases, the
computing time was 93 milliseconds. All computing times
mentioned in this paper have been measured on a personal
computer with 2.4 GHz clock rate and 3.25 GB of RAM
under the operating system Windows XP. The computa-
tional complexity of Algorithm 1 is linear with respect to the
number of points in a trajectory. The upper limit of the
computation time for a trajectory with N points is propor-
tional to M�N, where M is the maximum number of
consecutive trajectory points fitting in a circle with the
diameter MinDistance.

The next step after extracting the characteristic points
from all trajectories is to group the points in space, so that
the spatial extents of the groups approximate the desired
sizes of the cells (places) to be used for the generalization.

3.2 Grouping Characteristic Points in Space

A natural approach to group points in space is the use of
some clustering method. However, the existing clustering
algorithms are not well suited to our needs. Thus, the popular
clustering algorithms “k-means” and “k-medoids” [17], [30]
require that the desired number of clusters be specified as a
parameter. In our case, however, the number of clusters is not
known in advance. The density-based clustering algorithms
[10] can produce clusters of arbitrary shapes and spatial
extents whereas we need such groups of points that can be
enclosed by convex polygons of a certain size, depending on
the desired level of the generalization. We did not find any
clustering algorithm capable of producing convex spatial
clusters with desired spatial extents. Therefore, we have
devised and implemented the following algorithm:

Algorithm 2. Grouping points in space

Given:
- Set of points P ¼ ðxi; yiÞ; 1 � i � n.

- MaxRadius—the desired radius of a group, i.e., the

radius of the circumferential circle of all its points.

Description of the algorithm:

1. find xMin, xMax, yMin, yMax:

8p 2 P: xMin � p:x � xMax & yMin � p:y � yMax.

/� the bounding rectangle of P �/

2. buildG ¼ GridðxMin; xMax; yMin; yMax;MaxRadius,

MaxRadius);

/� G is a grid with square cells covering the bounding

rectangle of P. The size of a grid cell is MaxRadius �
MaxRadius. The grid is used as a spatial index for

a better efficiency of the algorithm. As point groups are

built, their centroids (average points) are put in the grid

cells according to their coordinates. �=

3. let R ¼ �; =� this will be the resulting set of groups �=

4. for each p 2 P put in proper groupðp;R;GÞ;
end for each;

5. redistribute_points(P,R,G);

6. return R;

procedure put_in_proper_group (Point p, Set R, Grid G):

1. let c ¼ get closest centroidðp;GÞ;
2. if c ¼ null then

build g ¼ Groupðp; pÞ;
/� the new group g consists of a single point p,

which is the centroid of the group �/

let R ¼ R [ fgg;
else

get g 2 R: g.centroid ¼ c;

/� g is the group with the centroid c �/

let g:members ¼ g:members [ {p};

remove c from G;

compute g:centroid ¼ get centroid(g.members);

end if ;

3. let ði; jÞ ¼ get grid positionðg:centroid;GÞ;
4. put g.centroid in G.cell[i,j];

procedure get closest centroid (Point p, Grid G):

1. let ði; jÞ ¼ get grid positionðpÞ;
2. /� take from the cell (i,j) and the neighboring cells all

centroids whose distances to p do not exceed

MaxRadius �/
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Fig. 6. The characteristic points extracted from (a) the 6,187 trajectories
of cars in Milan and (b) the 74 trajectories of roe deer. The parameters in
both cases were MinAngle ¼ 30�, MinStopDuration ¼ 300 seconds,
MinDistance ¼ 100 m, and MaxDistance ¼ 3;000 m. The points are
represented by circles drawn with 10 percent opacity.

Fig. 5. Characteristic points extracted from the same trajectory by
Algorithm 1 with different settings of the parameters MinDistance
and MaxDistance. (a) MinDistance ¼ 100 m, MaxDistance ¼ 2;000 m.
(b) MinDistance ¼ 500 m, MaxDistance ¼ 2;000 m. (c) MinDistance ¼
250 m, MaxDistance ¼ 2;500 m. In all cases, MinAngle ¼ 30 degree
and MinStopDuration ¼ 300 seconds.



let C ¼ �;

for k ¼ max(i� 1,1) to min(iþ 1,G.nRows)

for m ¼ max(j� 1,1) to min(jþ 1,G.nColumns)

for each c 2 G:cell½k;m	
if spatial distanceðp; cÞ � MaxRadius then

let C ¼ C [ fcg;
end if ;

end for each;

end for;

end for;

3. if C ¼ � then return null; end if ;

4. /� if C contains several centroids, take the one that is the

closest to p �/

find ck 2 C : 8cm 2 C spatial distanceðck; pÞ �
spatial distanceðcm; pÞ;

5. return ck;

procedure get_grid_position (Point p, Grid G):

/� compute the grid cell in which the point fits �/

1. let i ¼ floor((p.x-xMin)/MaxRadius);

2. let j ¼ floor((p.y-yMin)/MaxRadius);

3. return (i,j);

procedure redistribute_points (Set P, Set R, grid G):

/� redistribute the points among the groups �/

1. /� remove all points from all groups but keep the group
centroids �/

for each g 2 R let g:members ¼ �; end for each;

2. /� for each point, find the closest centroid and put the

point in the respective group without changing the

centroid �/

for each p 2 P

let c ¼ get closest centroidðp;GÞ;
get g 2 R: g.centroid ¼ c;
let g:points ¼ g:points [ {p};

end for each;

The computational complexity of this algorithm is linear
with respect to the number of points. To place a point in the
right group, it is necessary to compute its distances to the
group centroids located in at most nine grid cells (see
procedure get_closest_centroid). If K is the maximum
number of centroids fitting in a grid cell, distances to at
most K�9 centroids need to be computed. Since the sizes of
the grid cells are determined by the value MaxRadius, which
is also the maximum radius of a group, a cell may contain at
most four group centroids (this may happen in a particular
case when the coordinates of the centroids coincide with the
corners of the cell). In our experiments, the computing time
was 265 milliseconds for the 36,328 points extracted from the
Milan data set and 266 milliseconds for the 35,113 points
extracted from the roe deer data set (with MaxRadius ¼
3;000 m in both cases). In the first case, we obtained
54 groups, and in the second case, 33 groups. For
comparison, we applied the algorithm “simple k-means”
available in the Weka data mining library [30] to the same
sets of points. Producing 54 clusters from the Milan set took
79.59 seconds, and producing 33 clusters from the roe deer
set took 29.84 seconds.

Our method differs from simple k-means not only in the
computing time but also in the results produced. As can be
seen from Figs. 7a and 7b, the groups of points produced by
Algorithm 2 (Fig. 7b) are spatially more compact and do not
differ so much in spatial extents as the clusters produced by
simple k-means (Fig. 7a). The boxes in Fig. 7a enclose three
groups of spatially scattered points that have been treated as
clusters by the simple k-means method. Algorithm 2 divided
these into smaller groups. Table 1 contains statistics of the
sizes and densities of the point groups generated by simple k-
means and by Algorithm 2. The three numbers given per
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Fig. 7. (a) The characteristic points extracted from the trajectories of the
roe deer have been clustered by the “simple k-means” method. (b) The
same points have been grouped by Algorithm 2; MaxRadius ¼ 3;000 m.
(c) The groups resulting from Algorithm 2 have been optimized using
Algorithm 3. (d) The points have been grouped by Algorithms 2 and 3
with MaxRadius ¼ 5;000 m. In all cases, the groups are represented by
colors of the circles representing the points.

TABLE 1
Characteristics of the Clusters Generated by

Simple K-Means and by Algorithm 2



method and metrics are the maximum, mean, and standard
deviation, respectively. It can be seen that the radii of the
clusters by simple k-means vary greatly and reach much
larger values than for the groups by Algorithm 2. The mean
and median distances from the points to the centroids of their
groups do not differ much on average, while the maximum
values are much larger for simple k-means. The maximum
and average densities of the groups by Algorithm 2 are much
higher than those for simple k-means.

Hence, Algorithm 2 suits much better to our needs. Still,
we would like to decrease the sensitivity of the results to the
order in which the points are processed and to improve the
correspondence between the generated groups of points and
the “natural” clusters, i.e., dense concentrations of points.
For this purpose, we have devised a method that optimizes
the groups generated by Algorithm 2. The idea is to regroup
the points around the centers of dense regions.

Algorithm 3. Optimization of point groups with respect to

the densities of the points

Given:

- the set of point groups produced by Algorithm 2:

R ¼ fgkg; 1 � k � N;

- the grid G built in the same way as in Algorithm 2

(this may be the same grid but all centroids must be

removed from the cells).

Description of the algorithm:

1. for each gk 2 R:

1.1 compute medXYk ¼ Pointðx; yÞ where

x ¼ get median xðgk:membersÞ;
y ¼ get median yðgk:membersÞ;

/� x is the median of all x-coordinates and y is the

median of all y-coordinates �/

1.2. compute mDistk ¼ get mean distanceðgk:members;

medXYkÞ;
1.3. compute densk ¼ countðgk:membersÞ=mDist2

k;

/� an estimation of the density: the number of points

divided by the squared mean distance to medXYk
�/

end_for_each;
2. compute mDens ¼ get medianðdenskj1 � k � NÞ;
3. build oList ¼ OrderedListðfgigj1 � i � N}

where 8i; i > 1 : densi � densi�1;

/� oList contains the groups in the order of decreasing

densities �/

4. let R0 ¼ �;

5. for i = 1 to N while densi � mDens

let gi ¼ oList:element½i	;
find pMed 2 gi:members : 8p 2 gi:members

spatial distanceðp;medXYiÞ� spatial distanceðpMed;

medXYiÞ;
/� pMed is the group member that is the closest to

medXYi; it will be a seed of a new group �/

build g0;¼ Groupð�; pMedÞ;
let R0 ¼ R0 [ fg0g;
let ðj; kÞ ¼ get grid positionðpMed;GÞ;
put pMed in G.cell[j,k];

end_for;

6. for i ¼ 1 to N

let g ¼ oList:element½i	;
for each p 2 g put_in_proper_groupðp;R0;GÞ;

end for each;
end_for;

7. redistribute pointsðP;R0;GÞ;
8. return R0;

The results of Algorithm 3 for the points extracted from
the trajectories of the roe deer are presented in Fig. 7c. By
comparing it with Fig. 7b, we see that Algorithm 3, indeed,
improves the correspondence of the computed groups to
the natural clusters. This can be better seen in Fig. 8, where
the area containing the majority of the groups is enlarged.
The points are drawn with 10 percent opacity to enable the
estimation of the densities. The hollow black circles
represent the centroids of the groups.

Fig. 7d demonstrates the impact of the parameter
MaxRadius. The groups in Figs. 7b and 7c have been
produced with MaxRadius ¼ 3;000 m, and the groups shown
in Fig. 7d with MaxRadius ¼ 5;000 m. We judge the results of
the grouping to be quite good for different values of
MaxRadius.

The estimation of the point density in a group (step 1 of
Algorithm 3) requires explanation. Point density could be
computed as the number of points divided by the spatial
extent of the group, which can be approximated by the area of
the circumferential circle or bounding rectangle. However, if
a group consists of a compact dense cloud of points and one or
a few outliers located far from this cloud, the computed
density may be rather low due to the large size of the
enclosing shape. If a group contains a dense cloud comprising
the bulk of the points, the point medXY whose x and y-
coordinates are the medians of the x and y-coordinates of the
group members is likely to be located inside this cloud. We
use the mean distance of the points to medXY as an estimation
of the size of the dense cloud. This allows us to give proper
attention to groups where points are densely concentrated
irrespective of occasional outliers. Furthermore, in step 5, we
find the group member that is the closest to medXY and use it
as a seed for a new group.

The computational complexity of the optimization phase
(Algorithm 3) is the same as for Algorithm 2. In fact, this is a
reapplication of Algorithm 2 after some preparatory
operations (steps 1-5), which do not depend on the number
of points, but only on the number of groups. In our
experiments, the optimization phase takes less time than the
initial grouping (e.g., 203 versus 266 milliseconds for the roe
deer data and 235 versus 265 milliseconds for the Milan cars
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Fig. 8. The area containing the majority of the groups shown in Fig. 7c is
enlarged. The points are drawn with 10 percent opacity. The hollow
black circles represent the centroids of the groups. A good correspon-
dence between the groups produced by Algorithms 2 and 3 and the
existing dense concentrations of points can be observed.



data). The reason is that the points in the optimization
phase do not come in a random order, but are taken from
existing groups, and there are fewer groups to check in
order to find an appropriate group for each coming point.

3.3 Partitioning the Territory

To divide the territory into appropriate compartments, we
use the centroids of the point groups as the generating points
for Voronoi cells. We also introduce additional generating
points around the boundaries of the territory and in the areas
where there are no characteristic points from the trajectories.
This allows us to obtain cells of more even sizes and shapes.
Thus, in the data about the roe deer, the points are
concentrated in limited areas. If only the group centroids
are used for the partitioning, some of the resulting cells have
very elongated shapes and are much larger than the others,
as illustrated in Fig. 9a. In Fig. 9b, the division has been done
with the use of additional points. The cells are much more
even in size and shape. The additional points are generated
in a regular manner. A new point is added only if it is
sufficiently far from all group centroids, which means that
the distance is more than the doubled MaxRadius. The use of
additional generating points is not absolutely necessary, but
it can improve the appearance of the resulting flow maps.

The Voronoi cells are built on the basis of Delaunay
triangulation, for which we use the Java code developed by
Chew [5].

3.4 Dividing Trajectories into Segments

As said before, we apply place-based division of trajectories
into segments. This is done as follows: For each trajectory, the
cell c1 containing its first point p1 is found. Then, the second
and following points of the trajectory are checked for being
inside c1 until finding a point pi not contained in c1. For this
point pi, the containing cell c2 is found. The trajectory segment
from the first point to the ith point is represented by the vector
(c1, c2). Then, the procedure is repeated: the points starting
from piþ1 are checked for containment in c2 until finding a
point pk outside c2, a cell c3 containing pk is found, and so forth
up to the last point of the trajectory. In the result, the trajectory
is represented by a sequence of cells {c1, c2, . . . ; cn}. There may
be also a case when all points of a trajectory are contained in
one and the same cell c1. Then, the whole trajectory is
represented by the vector (c1, c1).

Let us consider the more general case when a trajectory is
represented by a sequence of at least two cells. For two
consecutive cells ci and ciþ1, two possibilities exist: 1) ci and
ciþ1 are adjoining cells, i.e., having a common edge and 2) ci

and ciþ1 are not adjoining. The second case may need a
special treatment. In a visual representation, a vector
connecting nonadjoining cells intersects other vectors,
which decreases the legibility of the display. It may be
preferable to avoid such vectors. This can be done by
inserting intermediate cells between ci and ciþ1, such that
any two consecutive cells in the resulting sequence are
adjoining. We do this by means of linear interpolation.

Let pm be the last point of the trajectory contained in ci.
We build a straight line between pm and pmþ1, which is
contained in ciþ1, and find all cells intersected by this line.
These cells are inserted in the sequence between ci and ciþ1.
The corresponding intermediate points of the trajectory are
computed as the points of the crossing line having the
minimum distances to the generating points of the cells.

However, not any movement data permit interpolation
between known positions. In particular, interpolation may
be inappropriate in a case of large time intervals between
the position records in the data. For example, in a data set
with positions of mobile phone users, the position records
exist only for the time moments when the users make calls.
It would be inappropriate to make any assumptions
concerning their positions between the calls. The set of
records about georeferenced photographs published in
flickr and/or Panoramio (see Section 5.3) has similar
properties. This data set contains sequences of positions of
people who made photographs in different places. The
positions of these people between the moments of taking
the photographs are unknown and cannot be estimated by
means of interpolation.

Our generalization tool allows the user to choose
whether to apply interpolation or not, on the basis of user’s
knowledge about the nature of the data.

Irrespective of the use of interpolation, the tool finds, for
each trajectory, a sequence of cells {c1, c2; . . . ; cn}. A cell may
appear in this sequence more than once, but there is always
at least one other cell between two occurrences. For each
cell ci in the sequence, there is a corresponding segment of
the trajectory [pi

1, pi
2], where pi

1 is the first trajectory point
inside ci and pi

2 is the last trajectory point inside ci. In
particular, the segment inside the cell may consist of a
single point, i.e., pi

1 and pi
2 may coincide.

Accordingly, each trajectory is represented by a sequence
of visits fv1; v2; . . . ; vng of the cells {c1, c2, . . . ; cn}. A visit vi is
a spatiotemporal object <ci, tstart, tend>, where ci is a cell,
tstart is the starting time of the visit, and tend is the ending
time. The times tstart and tend equal the temporal references
of the points pi

1 and pi
2, respectively. Besides, the following

characteristics of each visit are computed:

- the estimated duration of staying inside the cell (i.e.,
the difference between tend and tstart);

- the estimated length of the internal path inside the
cell, which is computed on the basis of the spatial
coordinates of pi

1, pi
2, and intermediate points, if any;

- the average speed of the movement, which is the
ratio between the path length and the duration of
staying inside the cell.
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Fig. 9. (a) Voronoi polygons generated using only the group centroids.
(b) Voronoi polygons generated using the group centroids and additional
points in empty areas and around the bounding rectangle of the
trajectories.



At the same time, each trajectory is also represented by a
sequence of moves fm1;m2; . . . ;mn�1g, where a move mi is a
spatiotemporal object <ci, ciþ1, t0, tfin> describing the
transition from cell ci to cell ciþ1. Here, t0 is the time moment
when the move began and tfin is the time moment when the
move ended. We take t0 to be the same as tend of the visit vi of
the cell ci; tfin is the same as tstart of the visit viþ1 of the cell
ciþ1. For each move, like for a visit, it is also possible to
compute the duration, length, and average speed.

3.5 Aggregation of the Data

Hence, we have generated a dual representation of each
trajectory: as a sequence of visits and as a sequence of
moves. On this basis, we aggregate the data in two
complementary ways. First, for each cell of the territory
division, we aggregate the visits of this cell. We count the
number of visits and compute the statistics of durations,
path lengths, and average speeds (minimum, maximum,
mean, median, etc.). Second, for each pair of cells (cj, ck), we
aggregate the moves from cj to ck. Note that the pairs (cj, ck)
and (ck, cj) are different. For each aggregate move, we count
the number of elementary moves and compute the statistics
of durations, lengths, and average speeds.

In both cases, the counts and statistics may be computed
not only for the whole time span of the data, but also by
arbitrarily defined time intervals. In the latter case, each cell
and each aggregate move will be characterized by time
series of aggregate attribute values. It is also possible to do
the aggregation in a dynamic way, as described in [24]. The
idea is that the aggregate attributes are recomputed in
response to changes of any filters applied to the trajectories,
including temporal, spatial, and attribute filter.

In our examples of aggregated representation of move-
ment data, the aggregate moves are represented by arrows
(vectors) with the widths proportional to the counts of the
elementary moves. However, it is also possible to visualize
any other attribute of the aggregate moves by means of
vector widths and/or coloring. Besides, it is possible to
visualize the statistics of the visits of the cells by means of
coloring, symbols, or diagrams.

4 THE QUALITY OF THE GENERALIZATION

4.1 Measuring the Quality

In the visual representation of aggregate moves by vectors,
the starts and ends of the vectors are positioned near the
generating points of the Voronoi cells. Each vector represents
a certain set of trajectory segments. The generalization may
be deemed good if each vector closely approximates the
respective trajectory segments. This refers to the start and
end points of the trajectory segments, but not to their
geometric shapes, which are not taken into account in the
aggregation. Hence, the quality of the generalization can be
expressed in terms of the displacements, i.e., the distances
between the start and end points of the vectors, and the start
and end points of the respective trajectory segments: the
smaller the displacements, the better the quality.

It is also possible to look at the quality of the general-
ization from a different perspective, taking into account the
dual representation of the trajectories in the generalization.
Each trajectory is transformed into a sequence of visits of

some areas. In each area, there is at least one point of the
trajectory. In the visualization of the aggregated data, the
areas are represented by certain points, which serve as
starts and ends of the vector symbols. The quality of the
generalization can be measured in terms of the distances
between the representative points of the areas and the
original trajectory points inside the areas: the smaller the
distances, the better the quality.

These two approaches to the assessment of the quality
are equivalent, both being based on computing the
distances between the representative points of the areas
(i.e., the generating points of the Voronoi cells in our case)
and the points of the trajectories contained in the areas. In a
case when there are two or more points of a trajectory in one
visit, the quality measure for this visit is derived from the
distances of these points to the representative point by
applying an appropriate statistical operator such as mini-
mum, mean, or median. Our choice is the minimum
distance. The number of trajectory points in an area is
mainly the function of the frequency of position measure-
ments. This factor is not very relevant to the generalization
quality assessment. The use of the minimum distance
reduces the dependence of the quality measure on the
positioning frequency.

We shall call the quality measure for a single visit of an
area elementary displacement. The local quality of the general-
ization in an area is expressed in terms of the mean
displacement and total displacement, which are, respectively,
the mean and sum of the elementary displacements. The use
of only one measure would be insufficient. When an area
contains only a few dispersed visits, the mean displacement
is high. However, since the visits are few, the importance of
this area from the perspective of the overall quality is low.
This corresponds to the low value of the total displacement in
this area. On the other hand, the total displacement in an area
containing very many visits may be high due to the sheer
number of visits while all elementary displacements may be
quite low. In this case, the mean displacement is low, which
indicates a high local quality.

The overall generalization quality for the whole territory
may be assessed in terms of the summary statistics of the
local quality measures: minimum, maximum, mean, med-
ian, quartiles, etc.

The local quality measures can be visualized and
examined. An example is presented in Fig. 10. The map
contains the areas (Voronoi cells) and the aggregate moves
derived from the same subset of the Milan car trajectories,
as shown in Fig. 1. The generalization has been done with
MaxRadius ¼ 2;500 m. The local quality measures are
visualized on the map by means of radial diagrams where
the radii of the yellow segments are proportional to the total
local displacements and the radii of the blue segments to the
mean local displacements. The gray circles around the
segments correspond to the maximum values of both
measures. Fig. 14a shows an enlarged map fragment, which
also includes the layer with the original trajectory lines. The
trajectory lines are drawn with 10 percent opacity. As a
result, the visible degree of darkness of the lines corre-
sponds to the density of the trajectories: the more
trajectories overlap, the darker the lines. It may be seen
that the mean local displacements are low in the places
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where aggregate moves are close to dark lines, i.e., densely
concentrated trajectories. In the places where aggregate
moves substantially deviate from dense bundles of trajec-
tory lines, the local displacements are higher. Hence, the
numeric measures correspond quite well to the intuitive
understanding of the quality of the generalization.

4.2 Improving the Quality

In some cases, it may be desirable to improve the quality of
the generalization, for example, when it is necessary to
produce a flow map for presentation purposes. In principle,
the generalization quality may be substantially improved
on the whole territory by decreasing the value of MaxRa-
dius in Algorithms 2 and 3. As a result, the territory will be
partitioned into smaller areas. The displacements in small
areas are also small; hence, the quality is higher. However,
smaller areas mean lower degree of generalization, which
may be unsuitable for the required map scale. It is desirable
to have a way to improve the generalization quality locally,
i.e., only in the places where it is deemed necessary.

We suggest Algorithm 4 to refine the territory division in
selected places. The refined division is used for reaggregat-
ing the data.

Algorithm 4. Local refinement of the territory division for

improving the generalization quality

Given:

- territory division D ¼ fcig; 1 � i � nCells, where each

compartment ci is a Voronoi cell having its
representative (generating) point, which is denoted

rPoint;

- V ¼ Vðc1Þ [Vðc2Þ [ 
 
 
 [VðcnCellsÞ, where VðckÞ is the set

of all visits of the cell ck;

- C - a selected subset of cells where quality improvement

is needed;

- distThreshold - the distance threshold for treating a visit

of a cell as being too far from its representative point. The
threshold may be defined as a constant value or as a

proportion of the mean, median, or maximum

displacement in a cell.

Description of the algorithm:

1. let P ¼ �;
2. for each c 2 C

/� extract the positions of the visits that are too far

from the representative point of the cell c �/

for each v 2 VðcÞ
let p = v.position;

if spatial distance(p,c.rPoint)>distThreshold then

let P ¼ P [ fpg;
end if ;

end for each;

end for each;

3. compute R ¼ get_spatial_groups(P);

/� the extracted points are spatially grouped using

Algorithms 2 and 3 �/

4. let GP ¼ �; /� this will be a set of generating points for

a new Voronoi tessellation �/

5. for each cl 2 R let GP ¼ GP [ fcl:centroidg;
end for each;

6. for each c 2 C

/� extract the positions of the visits that are closer to

the representative point of the cell c than to any

generating point in GP �/

let CP ¼ �;

for each v 2 VðcÞ
let p = v.position;
if 8g 2 GP

spatial distance(p,g) > spatial distance

(p,c.rPoint)

then

let CP ¼ CP [ fpg;
end if ;

end for each;

/� the centroid of the extracted set of points will be
used as a generating point for a new Voronoi

tessellation instead of the old generating point

c.rPoint �/

compute q = get centroid(CP);

let GP ¼ GP [ q;

end for each;

7. /� combine the new generating points with the

representative points of the cells that were not selected
for the quality improvement �/

for each ci 2 D

if ci 62 C then let GP ¼ GP [ fci:rPointg; end if ;

end for each;

8. compute D0 ¼ get V oronoi tessellation(GP);

9. return D0;

We have implemented two procedures for improving the
generalization quality, automated and interactive. The
automated procedure works in an iterative way. In each
step, it selects the cells where the values of the total and
mean displacement exceed the user-specified thresholds,
applies Algorithm 4, and reaggregates the data using the
new territory division. The thresholds for selecting the cells
are specified as percentages of the current maximum (see
Fig. 11). The user also specifies the maximum number of
cells to select in each step and the termination conditions,
which include the minimum quality improvement in
comparison to the previous state, the maximum number of
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Fig. 10. The local quality measures of the generalization of the Milan car
trajectories with MaxRadius ¼ 2;500 m.



iteration steps, and the maximum allowed computation
time. The result of the automated procedure is two map
layers: one with the refined territory division (Voronoi cells)
and the other with the corresponding aggregate moves. The
procedure also produces a report in the form of table, which
shows how many steps have been made, how many areas
added, the statistics of the quality measures for the resulting
aggregations, and the percentages of improvement in
comparison to the previous states. For example, from the
report shown in Fig. 12, we can learn that three iteration
steps were made, but the third step was not successful since
only a slight improvement was gained in the overall mean
displacement, while the overall total displacement in-
creased. Therefore, the result of the second step has been
taken as final.

Fig. 13 demonstrates the result of the automatic quality
improvement for the generalization presented in Fig. 10. The
parameters shown in Fig. 11 have been used. The changes
have been made in the western part of the inner city. This area
is enlarged in Fig. 14, where the new generalization can be
compared with the original one in more detail. In the new
generalization, the aggregate moves are closer to the dense
bundles of trajectory lines than in the original generalization.
At the same time, the segments in the diagrams representing
the local quality measures are smaller, i.e., the values are
lower. Hence, the improvement of the numeric quality
indicators corresponds to the perceived improvement of the
quality.

In the interactive procedure, the areas where the
generalization quality must be improved are explicitly
selected by the user. The system supports the selection by
automatic visualization of the local quality measures and
providing tools for interactive filtering (dynamic query)
and marking areas on the map. After the user has selected
one or more areas either by filtering or marking, the system

applies Algorithm 4, reaggregates the data, and visualizes
the results: the modified map layers, the statistics of the
quality measures, and the percentages of improvement.
The user has the choice to continue the procedure by
selecting other areas for quality improvement, to finish the
process, or to return to the previous state if the results are
not satisfactory.

5 APPLICATIONS OF THE GENERALIZATION METHOD

5.1 Summarization of Clusters of Trajectories

One of the big problems in using clustering techniques for
analysis of large sets of trajectories is how to visualize
clusters of trajectories so as to have an overview of all
clusters obtained and to be able to compare different
clusters. This is a problem because trajectories are not
disjoint in space. They may intersect and partly overlap,
and so do the clusters. Hence, there is no way to show all
clusters in one map in a comprehensible way. A suitable
approach is to generate multiple small maps, each present-
ing a single cluster. Since the maps have to be small, the
clusters need to be shown in a highly generalized manner.
The generalization method presented in this paper is well
suited to this purpose. An example is shown in Fig. 15.

There are two possibilities in applying the method to
clusters of trajectories. One is to do the tessellation of the
territory once using the trajectories from all clusters. Then,
the aggregation is done separately for each cluster. The other
possibility is to do also the tessellation separately for each
cluster. This is quite feasible even for a large number of
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Fig. 11. The dialog to start the automated procedure for improving the
generalization quality.

Fig. 12. A report about the work of the automated procedure for the generalization quality improvement.

Fig. 13. (a) The quality of the generalization presented in Fig. 10 has
been improved by means of the automated procedure. (b) The result of
the improvement is overlaid on the original generalization, to see where
the differences are.



clusters because the method works very fast. Thus, in Fig. 15,
both the tessellation and the aggregation have been done
individually for each cluster. In this case, the quality of the
generalization is higher than when a common tessellation is
used for all clusters.

5.2 Summarization of a Large Database

A set of movement data may be too big for loading into
RAM. Still, it is possible to get an overview of the data in a
summarized form. For this purpose, we first extract a
sample of trajectories from the database. The size of the
sample must be suitable for loading in the main memory.
From this sample, we extract the characteristic points of the
trajectories and divide the territory according to the spatial
distribution of these points. Assuming that the sampling is
done sufficiently well, i.e., the statistical and spatial
distribution properties of the whole data set are preserved
in a sample, we can use the territory division so obtained to
summarize the data not only from the sample, but also from
the whole database. To do this, we load the data in the main
memory by suitable portions and do the summarization
incrementally: the data from each new portion are added to
the previously summarized data. After a portion is
processed, it can be removed from the main memory, and
the next portion can be loaded instead. The results of the
summarization do not depend on how the database is
divided into portions because the division of the territory
does not change at this stage, but only the statistics of the
visits of the cells and moves between them are updated.

Incremental summarization of a large database can also
be done in combination with clustering. We first find
clusters in a subset of trajectories and generate a classifier,
which can attach new trajectories to the existing clusters on
the basis of their similarity to the trajectories of the clusters
[1]. For each cluster, we generate a suitable division of the
territory. Then, we load the trajectories from the database
into RAM by portions. The classifier compares each
trajectory to the definitions of the clusters. If it finds a
cluster in which this trajectory fits, the data from the

trajectory are summed up with the previously summarized
data for this cluster. At the end of the process, we obtain a
display, like in Fig. 15, representing in a summarized form
the clusters of trajectories existing in the whole database.

5.3 Multiscale Analysis

By varying the parameter MaxRadius in our method, we can
divide the territory into larger or smaller compartments.
This allows us to explore movement data at multiple spatial
scales. This is especially appropriate in a case when the data
represent movements differing very much in their spatial
extent, such as movements within cities or small areas and
movements between the cities or areas. An example is the
data about the georeferenced photographs published by
various people in Panoramio (www.panoramio.com) and
flickr (www.flickr.com). The photographs are linked to the
places where they were taken and supplied with the dates
and times of the shots. The positions of the photographs
made by the same person can be considered as a trajectory of
this person in the geographical space. We have investigated
the data about the subset of 590,000 Panoramio photographs
referring to the territory of Germany and made in the period
from January 1, 2005 to March 30, 2009 (the data have been
acquired and prepared by Kisilevich, Univ. Konstanz). We
found that people typically made multiple photographs of
different objects and places in one city or tourist area. The
data about the positions of these photographs represent the
movements of the photographers within the city or area.
Besides, many of the Panoramio users visited different cities
and made photographs there. Hence, apart from the small-
scale movements within cities/areas, there are also large-
scale movements between the cities/areas.

Our summarization method allows us to extract and
explore movements at different spatial scales. Thus, Fig. 16a
displays the major flows of the Panoramio users between
the cities and large areas in Germany. This flow map was
produced with MaxRadius ¼ 100 km. Only the flows
aggregating 100 or more moves are visible. In Fig. 16b,
the map with the flows inside the city of Düsseldorf has
been generated with MaxRadius ¼ 1 km (only the flows
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Fig. 15. A fragment of a display with summarized representations of
clusters of trajectories. Each cluster consists of trajectories with similar
routes.

Fig. 14. The part of the territory where the changes have been made by
the automated procedure for generalization quality improvement is
enlarged. (a) The original generalization (see Fig. 10). (b) The modified
generalization (see Fig. 13). The aggregate moves and the diagrams
representing the local quality measures are overlaid on the original
trajectory lines shown in black with 10 percent opacity.



standing for at least five moves are visible). Note that, in

this case, we do not apply interpolation when consecutive

points of a trajectory lie in different nonadjoining cells (see

Section 3.4). The reason is that the position records are

temporally very sparse, and it would be wrong to make any

assumptions about the paths of the photographers between

the places where they took the photographs.

5.4 Anonymization of Movement Data

The possibility to collect, store, disseminate, and analyze

data about movements of people raises very serious privacy

concerns, given the sensitivity of the information about

personal positions [13]. Therefore, an important problem is
how to anonymize movement data so that no information
about any particular person can be disclosed, but the data
are still suitable for analysis and can be a source of useful
information about the mobility of the population as a whole
or about large subsets of the population. One of the possible
approaches to hide identifiable personal information is
generalization of movement data by replacing exact posi-
tions in the trajectories by approximate positions, i.e., points
by areas. Our method for territory division can be used for
generating suitable areas. However, some extensions are
required. Thus, it is necessary to ensure that each area
contains positions from the trajectories of a sufficient
number of different people. The desired minimum number
of different people would be a parameter; let us call it
anonymity threshold. Hence, after having generated a version
of the territory division, the system must count the number
of different people whose positions are contained in each cell
and check whether this number reaches the specified
anonymity threshold. The cells where the threshold is not
reached must be enlarged to include positions of more
people. This can be done, in principle, by merging these cells
with neighboring cells. A disadvantage is that the resulting
areas will not be convex, which brings inconveniences for
the visualization and analysis. Another approach, which
may be more suitable, is to generate a new Voronoi
tessellation after excluding the generating points of the cells
where the anonymity threshold is not reached.

An important property of this method for protecting
personal data is that the resulting transformed data are
suitable for various kinds of analysis. Thus, it is possible to
analyze the flows between the areas and statistics of the visits
of the areas. One may also analyze the statistics of the travel
times between different pairs of areas, not only neighboring.
Frequently occurring sequences of visited areas can be
discovered by means of data mining techniques. It is also
possible to apply cluster analysis to the modified trajectories.
Thus, we have performed several experiments with cluster-
ing of the original car trajectories from Milan and generalized
versions of these trajectories using the generic density-based
clustering algorithm OPTICS with a suitable distance
function [1], [24]. We found that the results of clustering
the original and the generalized trajectories are very similar
when the distance threshold (the parameter of the clustering
algorithm) for the generalized trajectories is about one half of
the distance threshold for the original trajectories. This
allows us to believe that the idea has a good potential.
However, further investigations are required for checking
whether any risks to personal privacy are, indeed, precluded
when trajectories are anonymized in this way.

6 RELATED WORKS

Fredrikson et al. [12] described the use of spatial, temporal,
and categorical aggregation for visualization of discrete
events such as traffic accidents. Movement data are often
aggregated in the same ways [9], [11], [22], [31], i.e., the
position records of the data are treated as independent
discrete events. Although this approach can be suitable for
certain analysis tasks [3], it disregards the very essence of
movement as change of spatial position. Willems et al. [29]
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Fig. 16. Generalization of the data about Panoramio photos at two
different scales.



build a density surface from movement data, taking into
account the spatial and temporal dependencies between
position records. However, such a surface does not convey
information about the movement directions.

Movement data can also be aggregated in the form of
vector fields (e.g., [7]). The underlying area is partitioned by
means of a regular grid. In each grid cell, a vector is built
with the angle corresponding to the prevailing movement
direction and length and width proportional to the average
speed and the amount of movement, respectively. This
approach, however, does not work well when the movement
directions inside the cells vary greatly and no dominant
directions exist. This is the case of city traffic, for instance.

There are also works where movement data are
considered as moves between predefined places. Aggre-
gated moves are visualized by means of flow maps [26], [27]
and transition matrices [15], where the rows and columns
correspond to the places and symbols in the cells or cell
coloring or shading encode aggregated values, in particular,
the counts of the moves. Guo et al. [15] also use a multimap
display, where each map represents the aggregated moves
from/to a single place by colors or shades of the places.

Our paper suggests a method for territory partitioning,
which can be used to define suitable places for the
aggregation of movement data when there are no pre-
defined places. The partitioning is done on the basis of the
spatial distribution of points extracted from movement
data. In geographical research, the procedure of building
regions by grouping spatial objects is called regionalization
[16]. The approaches are based on various clustering
techniques [4]. These approaches are computationally
complex as they account not only for the spatial neighbor-
hood of the objects, but also for their similarity in terms of
nonspatial attributes. For this reason, they do not scale to
very large sets of objects. Such complex algorithms are, on
the one hand, not necessary for our purposes since we do
not use any nonspatial attributes of the points. On the other
hand, these algorithms are not suitable for us since we have
to deal with very large numbers of points.

Guo [14] applies a graph-based clustering algorithm to
aggregate about 200,000 different locations defined in
synthetic movement data into a smaller number of larger
places. The algorithm is suited to a specific property of this
data set: the locations are fixed and can appear in trajectories
of different moving agents and/or reappear in the trajectory
of the same agent. On this basis, Guo builds a spatial
interaction graph where two locations are linked if they
share at least one visitor. The algorithm divides this graph
into subgraphs containing approximately equal numbers of
strongly connected locations. This approach is not directly
applicable to real movement data. Due to temporal gaps and
unavoidable errors in measuring positions, it cannot be
guaranteed that the recorded tracks of two or more moving
agents who visited the same point in space will contain
position records with exact coordinates of this point. Hence,
the links between all locations are hard to reconstruct. Our
method for grouping points, which is based on computing
distances between the points and densities of the points, is
suitable for real movement data. Our method also differs
from graph-based methods in generating regions of desired
size. The regions resulting from graph-based methods are

small in dense areas and large in areas where the original
locations are sparsely distributed.

Cui et al. [6] argue for the necessity of assessing the quality
of data abstraction used in visualization and suggest two
possible quality measures. The histogram difference mea-
sure (HDM) is applicable to data abstraction by means of
sampling. It compares the frequency distributions of
attribute values in a sample and in the whole data set. For
the nearest neighbor measure (NNM), it is assumed that each
record in the original data set has a nearest neighbor (the
most similar object) in the abstracted data set, called its
representative. The NNM is the normalized average of the
distances between every record of the original data set to its
representative. There is a similarity between the NNM and
our quality measures. In our case, the positions from the
original data are represented by the generating points of the
Voronoi cells. We measure the distances between the original
positions and their representatives. The local quality
measures are the mean and sum of these distances computed
for each cell. The global quality measures are the mean and
sum of the distances computed for the whole set of positions.

Cui et al. also argue that information about data
abstraction quality should be explicitly presented to
analysts, and that the latter should have a possibility to
adjust the data abstraction level by trading off the accuracy
of representing the data and the degree of visual clutter.
Our system visualizes the quality measures and provides
tools for adjusting the data abstraction level in spatial
aggregation of movement data. It is possible to increase or
decrease the abstraction level on the whole territory and to
do local adjustments in selected parts of the territory.

7 CONCLUSION

We have described an approach to spatial generalization
and aggregation of movement data. In this approach, the
space is divided into compartments, the trajectories are
transformed into moves between the compartments, and
the moves with common origins and common destinations
are aggregated. The results can be visualized by means of a
flow map or transition matrix. The major part of the
contribution is a method for space partitioning based on
spatial grouping of characteristic points extracted from the
trajectories. We suggest a simple and fast algorithm for
spatial grouping of points. The desired spatial extent of a
group is a parameter of the algorithm. Through this
parameter, the user can control the overall level of data
abstraction. We also suggest a set of suitable local and
global measures of the data abstraction quality and
techniques supporting local adjustments of the quality
and abstraction level in selected parts of the territory.

We have outlined possible applications of our general-
ization method. We have tested the method on essentially
different examples of real movement data, including
trajectories of vehicles, pedestrians, animals (roe deer and
white storks), and data consisting of positions of photo-
graphs published in the Web. In all cases, the method
allowed us to obtain interpretable data abstractions. The
method is very fast and therefore well suited to the use in
interactive visual exploration of movement data. At the
same time, the method can be used for creating legible flow
maps for presentation purposes.
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