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COPE: Interactive Exploration of Co-
occurrence Patterns in Spatial Time Series 

Jie Li, Siming Chen, Kang Zhang, Gennady Andrienko, and Natalia Andrienko  

 
Fig. 1. COPE is a visual analytics framework consisting of three components: (a) Event Extractor, which extracts interactively 
defined events of interest from spatial time series, (b) Event View, which shows the distribution of the extracted events over space 
and time, and (c) Co-occurrence Explorer for interactive exploration of co-occurrence patterns. In this example, the user is 
exploring which countries had high per capita income growth rates at the same times as this happened in China. 

Abstract—Spatial time series is a common type of data dealt with in many domains, such as economic statistics and 

environmental science. There have been many studies focusing on finding and analyzing various kinds of events in time series; 

the term ‘event’ refers to significant changes or occurrences of particular patterns formed by consecutive attribute values. We 

focus on a further step in event analysis: discover temporal relationship patterns between event locations, i.e., repeated cases 

when there is a specific temporal relationship (same time, before, or after) between events occurring at two locations. This can 

provide important clues for understanding the formation and spreading mechanisms of events and interdependencies among 

spatial locations. We propose a visual exploration framework COPE (Co-Occurrence Pattern Exploration), which allows users to 

extract events of interest from data and detect various co-occurrence patterns among them. Case studies and expert reviews 

were conducted to verify the effectiveness and scalability of COPE using two real-world datasets. 

Index Terms—Co-occurrence patterns, spatiotemporal visualization, spatial time series, visual analytics  

——————————      —————————— 

1 INTRODUCTION

PATIAL time series represent temporal variation of at-
tribute values at multiple spatial locations [5]. For a 

given location, the data specify the values attained by one 
or more attributes at different time moments or intervals, 
further jointly called ‘time steps’. Spatial time series de-

scribe spatiotemporal evolution processes, which may ex-
tend over large areas and/or develop over long periods of 
time. This makes spatial time series an important data type 
in many fields, such as economics [45], environment stud-
ies [36], urban traffic [53], and many others. 

Analyzing spatial time series has become an important 
research topic in visual analytics [8][30][36][43]. Most ex-
isting studies work on visualizing spatiotemporal distribu-
tion, analyzing temporal trends, and detecting anomalies. 
As a part of time series analysis, some of the proposed ap-
proaches support detection and exploration of various spa-
tiotemporal events. The term ‘event’ refers to significant 
changes or occurrences of particular patterns formed by 
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consecutive attribute values [24].  
We take a step further: we propose an approach called 

COPE (Co-Occurrence Pattern Exploration) that not only 
supports finding the locations and times of various events 
but also enables the analyst to explore what happened at 
other locations simultaneously with, before, or after the 
identified events. The ultimate goal is to support the dis-
covery of event co-occurrence patterns, i.e., frequent occur-
rences of a specific temporal relation between events hap-
pening at two locations, such as ‘same time’, ‘before’, or 
‘after’ (by a certain number of time steps). Please note that 
the term co-occurrence does not refer only to ‘same time’ 
cases but is used here in a more general sense. 

The task of finding co-occurrence patterns is pervasive 
in analyzing spatial time series. Let us take economy data 
as an example. When the economy of a region develops 
rapidly, it may stimulate economic growth in other re-
gions, but it may also have an opposite effect by attracting 
investments and talents from other regions. An analyst 
may wish to find which of the two possible cases actually 
happened, when, and where. This may give important 
clues to understanding economic problems. 

Since the notion of relevant event is formed in the mind 
of the analyst in the process of data exploration and may 
change over time, flexible event definition and extraction 
need to be supported. Moreover, the analyst may wish to 
look for diverse patterns in terms of the target location 
where the events occurred, the kind of the accompanying 
events (e.g., same as or opposite to the events at the target 
location), and the temporal relation between the events at 
the target location and the accompanying events at this 
and other locations. 

The analytical process thus consists of two stages: 1) de-
fine and identify relevant events and 2) find co-occurring 
events and explore the temporal distribution and the 
strengths of the co-occurrence relationships for different 
pairs of locations. Our goal is to support the whole process 
in such a way that the analyst has high flexibility in choos-
ing and changing the analysis focus. 

The proposed framework seamlessly supports the 
stages of event extraction and co-occurrence exploration. It 
makes the following contributions:  

1. A general definition of co-occurrence pattern. We 
model the co-occurrence pattern as a temporal relation 
between two event sets and propose a method for 
quantitation of the pattern strength. The definition 
provides a foundation for the analysis.  

2. An analysis framework for detecting and exploring 
co-occurrence patterns in spatial time series. The 
framework enables interactive event extraction and 
flexible co-occurrence exploration. 

3. A visual analytics tool that implements the frame-
work. It integrates three novel visualization compo-
nents and allows the analyst to move seamlessly be-
tween the two stages in the analysis, event extraction 
and co-occurrence exploration. 

The main novelty of our work is tackling an analytical 
problem that, to the best of our knowledge, was not yet ad-
dressed in the visualization and visual analytics research, 
as will be shown in the next section. 

The remaining part of this paper is organized as follows. 
Section 2 reviews related work. Section 3 defines the prob-
lem we are striving to solve and the requirements to be ful-
filled. The proposed solution is described in Section 4. A 
visual design of the tool that implements the framework is 
presented in Section 5. Section 6 describes two analytical 
case studies, followed by a discussion in Section 7. We con-
clude the paper in Section 8. 

2 RELATED WORK 

We review the related work regarding the four aspects: 
analysis of spatial time series and events, event extraction 
from time series, spatiotemporal visualization, and analy-
sis of event co-occurrences. 

2.1 Analysis of Spatial Time Series and Events 

Spatial time series is an important type of data in many 
fields [12], such as, economy [25], global trade [27], traffic 
[35] and emergency response [33]. Research has been fo-
cusing on situation understanding [9], forecasting [29], 
anomaly detection [28], and relationship identifying 
among different parts of data [59]. The proposed methods 
have acknowledged limitations [23]; thus, they lack the ca-
pability to display the results in a form that is easily per-
ceived by humans and to involve human analysts in the 
analysis process. The visual analytics methods dealing 
with spatial time series [8][36][43] mostly focus on summa-
rizing the data and providing comprehensible overviews 
rather than supporting more detailed analyses needed for 
detection of various events and exploration of relation-
ships between them. 

There exist visual analytics approaches supporting 
analyses of event sequences. Unger et al. [51] find categor-
ical event sequences with high semantic and temporal sim-
ilarities. Cappers and Wijk [14] detect event sequences sat-
isfying user-defined rules. Du et al. [21] find past event se-
quences that are partly similar to users’ event sequences 
and lead to users’ desired goals. The problems that are 
tackled in all these works differ from ours. Our focus is 
temporal relationships between events from different se-
quences rather than similarity of the sequences. Monroe et 
al. [40] provide an aggregated display of a large number of 
event sequences and enable detecting occurrences of same 
events or subsequences at the same relative positions in 
multiple event sequences. Our work differs in several re-
spects: (1) we deal with a variety of temporal relationships, 
not only ‘same time’; (2) we focus on discovering not just 
instances but patterns of co-occurrence, when multiple 
such instances exist for sequence pairs; (3) as our events 
occur in space, we enable exploring their spatial locations 
and distributions. 

2.2 Event Extraction from Spatial Time Series 

Extracting goal-relevant events from original data is an ef-
fective way to reduce data volume and pattern variety to 
sharpen analytical focus [21]. Many researchers focused on 
detection of peaks or pits in the time series. Andrienko et 
al. [4] proposed a peak detection algorithm. Chen et al. [18] 
defined a peak model of a MOOC video clickstream and 
used it to find the sequences with frequent operations. 
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Gregory and Shneiderman [24] developed a visualization 
system allowing the user to identify different types of 
shapes in time series: spike, sink, rise, drop, plateau, val-
ley, and gap; such shapes are called ‘motifs’ in data mining 
and statistics [15], where much research on event detection 
has been conducted [26][56]. A common feature of the 
event detection algorithms and systems is their focusing on 
particular shapes irrespectively of the values of the attrib-
utes, while the latter may be quite important in analyzing 
specific data. Our framework allows the analyst to define 
events of interest in a flexible way based on the absolute 
attribute values or the character and rate of change. 

2.3 Spatiotemporal Visualization 

The combination of space, time, and multiple attributes 
creates such information richness and heterogeneity that 
makes spatial time series impossible to visualize using 
standard charts. The possibilities for a combined visualiza-
tion of the spatial and temporal aspects of data in a single 
display are very limited, and the existing scarce ap-
proaches are not scalable to large amounts of data [7].  A 
common approach is to use coordinated views [44][32], 
where map displays show the spatial aspect and various 
kinds of time-oriented displays [1][3] show the temporal 
aspect. Waldner et al. [53] used curves to link multiple as-
pects of objects in different projection space. Andrienko et 
al. [6] and Landesberger et al. [31] resorted to the spatio-
temporal aggregation and clustering respectively. Tom-
inski et al. [50] proposed a stacked visualization technique 
in 3D space. Elzen et al. [22] and Bach et al. [11] sequen-
tially connected points in a projection obtained by means 
of dimensionality reduction to show temporal patterns of 
evolving multi-dimensional features. Different from the 
existing works, we utilize a small-multiple method, where 
multiple maps are arranged horizontally according to time 
and vertically according to intervals of attribute values. 
Various interactions enable exploring a large number of 
objects over a long time period.  

2.4 Co-occurrence Analysis of Spatial Events  

A lot of research related to co-occurrence analysis is done 
in data mining, where it is acknowledged that the spatio-
temporal context of events increases the analysis complex-
ity [10]. A related earlier concept is colocation [46], which 
means that objects are frequently located close to each 
other [57][58]. Later, researchers began to use the concept 
of co-occurrence to consider colocation phenomenon 
within semantically rich spatiotemporal context. Numer-
ous specific types of spatiotemporal co-occurrence pat-
terns with different spatial and temporal constraints have 
been introduced [16][17][42][60], which reflects the variety 
of co-occurrence patterns. 

Exploring co-occurrence patterns of predefined spatial 
events has also received attention in the visualization com-
munity [13][37][55]. The task of event definition and detec-
tion was not addressed in these works. Most of them aim 
at finding individual co-occurrences of events rather than 
persistent constant co-occurrence patterns. The work by 
Peuquet et al. [41] focuses on patterns at a high spatial scale 
rather than relationships between specific locations. Wu et 

al. [55] analyze co-location phenomena based on human 
movement trajectories. Chen et al. [19] use geolocated so-
cial media data to discover links between locations in 
terms of people movement between them. Their goal is dif-
ferent from detecting relationships based on event co-oc-
currences, which is the focus of our work.  

Our review shows that the problem of flexible interac-
tive event extraction from spatial time series and discovery 
of location-specific patterns of event co-occurrence has not 
been addressed yet in visual analytics. 

3 PROBLEM STATEMENT 

In this section, we define the concept of co-occurrence pat-
tern and set the requirements to guide the design of the 
analytical framework. 

3.1 Definition of Co-occurrence Pattern 

To define the concept of co-occurrence pattern, we need to 
introduce a few other definitions. 

Definition 1. Let L={l1, l2,…, lM} be a finite set of spatial 
locations and T=(t1, t2,…, tN) is a sequence of consecutive 
time steps, where ‘step’ may refer to a moment or interval 
in time. Let A be a set of attributes characterizing the loca-
tions at different times, i.e., for each location li there is a 
temporally ordered sequence (ai1, ai2,…, aiN), in which every 
aij is a combination of attribute values characterizing the 
location li at time step tj. Each such sequence is called loca-
tion-specific time series, or, shortly, local time series. The 
set of local time series for all locations in L is called spatial 
time series.  

The illustration in Fig. 2 shows that spatial time series 
can be represented as a matrix with the two dimensions 
corresponding to the locations L and time steps T, the cells 
being filled with the attribute values or combinations. The 
latter case (i.e., when there are multiple attributes) can also 
be represented as a cube where the third dimension accom-
modates the different attributes and the cells contain val-
ues of singular attributes. 

 

 
Fig. 2. Illustration of the spatial time series. Each red circle represents 
a city in the China air quality observation system. 

The concept of the spatial event has been defined as any 
physical or abstract entity that only exists at some moment 
or a limited interval in time and has a location in space [5]. 
According to this definition, any element aij of a spatial 
time series is a spatial event (it exists at location li and time 
moment or interval tj) and, moreover, any subsequence aij,  
aij+1, …, aij+k is also a spatial event (it exists at location li dur-
ing time interval [tj, tj+k]). However, not all these events 
may be relevant to the goal of analysis but only events with 

location t1 t2 t3 … tn

l1 a11 a12 a13 …… a1n

l2 a21 a22 a23 …… a2n

l3 a31 a32 a33 …… a3n

…… …… …… …… …… ……

lm am 1 am 2 am 3 …… am n
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particular properties. The properties that distinguish rele-
vant events from the rest of the data can be, in general, 
specified by a predicate P(A), which includes one or more 
conditions concerning the attribute values. A condition 
may refer either to the values themselves or to changes of 
the values compared to the previous time step or another 
time step in the past, or over a time interval. For example, 
a condition may specify that the growth rate of per capita 
income must be over 5%. 

Definition 2. A relevant event, also called event of in-
terest, with respect to a given relevance predicate P is a tu-
ple < li, tj, aij, P> such that P(aij) = true. 

Hence, a relevance predicate defines a set of relevant 
events that can be extracted from spatial time series. We 
shall use the notation E(P) for a set of relevant events ac-
cording to a predicate P and denote a member event from 
this set as eP, i.e., eP  E(P). A relevant event that occurred 
at location li and time tj will be denoted eP(li, tj). The subset 
of all relevant events that occurred at location li will be de-
noted as Ei(P). The whole set E(P) is a union of the subsets 
of relevant events that occurred at all location l1, l2,…, lM : 
E(P) = E1(P)  E2(P)  …  EM(P). 

Definition 3. Let Ei(P) and Ej(Q) be sets of relevant 
events according to predicates P and Q that occurred at lo-
cations li and lj, respectively. Let R be a specific temporal 
relation, such as ‘same time’, ‘before’, or ‘after’ [2]. A co-
occurrence pattern between locations li and lj is the set con-
sisting of all pairs of relevant events (eP(li, tx), eQ(lj, ty)) such 
that eP(li, tx)  Ei(P), eQ(lj, ty)  Ej(Q), and the expression tx R 
ty is true, i.e., the specified temporal relation R holds be-
tween the times of the event occurrence.  

This definition allows P and Q to be the same predicate 
(P = Q); obviously, in this case, E(P) = E(Q). 

The upper part of Fig. 3 schematically illustrates differ-
ent temporal relations that can exist between relevant 
events from two subsets Ei and Ej that occurred at locations 
li and lj, respectively: at the same time (a), earlier or later by 
a fixed temporal interval (b-c), and earlier or later within a 
given maximal temporal interval (d-e).  

A co-occurrence pattern between two locations li and lj 
can be denoted as Cij = (li, lj, P, Q, R), where P and Q are 
relevance predicates and R is a temporal relation.  

Definition 4. The cardinality of a co-occurrence pattern 
Cij, denoted Cij|, is the number of event pairs in it. 

Definition 5. The strength of a co-occurrence pattern Cij 
for li is the ratio between the cardinality of the pattern and 
the cardinality of the subset Ei of relevant events that oc-
curred at location li: 

𝑆𝑖 =   |𝐶𝑖𝑗 |/|𝐸𝑖 | 

The value of si ranges in [0, 1], where si =1 means that 
the events of Ej always co-occurred with some events of Ei, 
while si =0 means that they never co-occurred. Fig. 3 (f-j) 
schematically illustrates examples of co-occurrence pat-
terns with si = 0.8, 0.6, 0.4, 0.2, 0 (sj = 1, 0.75, 0.5, 0.25, 0). 
Note that the co-occurrence strength Si and Sj are different 
when the number of events in Ej and Ej are different. The 
goal of co-occurrence pattern discovery is to find co-occur-
rence patterns whose strengths and cardinalities are suffi-
ciently high. 

 

 
 

Fig. 3. Illustration of co-occurrence patterns between sets of events Ei 
and Ej that occurred at locations li and lj. Pink and blue shapes 
represent two event sets, each containing five events marked with red 
and blue points. (a-e) Five types of temporal relations. (f-j) Co-
occurrence patterns with different strengths. 

3.2 A Simplified Approach to Defining Event 
Relevance 

The conceptual model presented in the previous subsec-
tion involves a very general way of specifying which 
events are relevant, namely, by creating an arbitrary pred-
icate concerning attribute values. While this allows very 
high flexibility in defining relevance, constructing predi-
cates may be a difficult and time-consuming task for the 
analyst. After consulting with several experts from differ-
ent domains and studying examples of time series analysis 
available in the literature, we came to a conclusion that an-
alysts are most often interested in detecting two kinds of 
events: 1) occurrence of very high or very low values and 
2) value change, such as increase or decrease, possibly, 
happening with a certain minimal rate. Regarding event 
co-occurrences between locations, analysts are often inter-
ested in either the same kind of events or opposite events, 
such as economic growth and decline, occurring at differ-
ent locations. 

Accordingly, the approach to defining relevance can be 
substantially simplified. Let us first consider the case of an-
alyzing spatial time series with a single numeric attribute 
A. Let [amin, amax] be the value range of A and D(A) be a di-
vision of this range into three subranges [amin, alow] + [alow, 
ahigh] +]ahigh, amax], where are alow and ahigh are two chosen 
threshold values such that amin < alow  ahigh < amax. This divi-
sion is suitable for defining simultaneously three kinds of 
relevant events: occurrence of low values, high values, and 
medium values. The threshold values alow and ahigh can be 
interactively set by the user. Selection of one of the three 
value subranges implicitly creates a relevance predicate, 
which is an easy way to define relevant events. 

This approach can be extended to relevant events in 
terms of value changes by involving appropriate transfor-
mations of the data. Thus, the original values can be trans-
formed to differences or ratios with respect to the previous 
time steps or, more generally, to time steps ti - t, where ti 
is the current step and t is a chosen temporal lag. Another 
possible transformation is computing the difference or ra-
tio to the mean or maximal value from the preceding time 
interval of a chosen length. Let A be the derived attribute 
resulting from the transformation. By specifying a division 
D(A) in a way similar to D(A), the analyst can define rele-

(1) 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 
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vant events of increase, decrease, and absence of signifi-
cant change. Moreover, the threshold values can specify 
the minimal amplitudes or rates of increase and decrease 
that are of potential interest. To define such events, the an-
alyst can choose a suitable transformation from a list. After 
the transformation is applied, the analyst interactively sets 
the thresholds. Again, this way of event definition is easy 
for the analyst. 

The idea of division can also be extended to values of 
qualitative (categorical) attributes and to value combina-
tions of multiple attributes; the analyst partitions a set of 
all values or combinations into three subsets such that two 
of them can be considered as opposite to each other and 
the third includes all the rest. This is quite easy to do for a 
single qualitative attribute. Dealing with multiple attrib-
utes requires more effort. The analyst may be proposed to 
use a parallel coordinate plot or a spider diagram the axes 
of which are suitably oriented and scaled (e.g., according 
to value quantiles), enabling convenient selection of com-
binations of high values of some attributes and low values 
of other attributes. 

In our prototype implementation, we enable defining 
relevant events based on a single numeric attribute, which 
is sufficient for a proof of concept. 

3.3 Analysis tasks 

Our analytical framework has been designed to support 
the following analysis tasks: 

T1: Extract all relevant events and see the locations and 
times of their occurrence. 

T2: For a chosen target location, see the times of event 
occurrence at this location and the spatial patterns of other 
events occurring at the same times, before, and after. 

T3: For a chosen target location, find other locations 
where events frequently occur simultaneously or with a 
specific time difference to the events at the target location. 
Assess and compare the strengths of these co-occurrence 
patterns between the locations.  

T4: For a chosen pair of locations, see the cases when the 
specified temporal relationships between events occur-
rences at these locations do and do not take place. 

3.4 Functional requirements 

According to the specific nature of spatial time series and 
the analysis tasks being addressed, we have identified the 
following functional requirements for supporting event 
co-occurrence analysis: 

R1: Flexible definition and extraction of relevant 
events. As we discussed earlier, the notion of the relevant 
event may not be predefined in the mind of the analyst but 
may be formed after initial data exploration and evolve in 
the course of further analysis. Hence, the analyst should be 
able to flexibly define and re-define the relevant events at 
any time during the analysis and immediately see the re-
sulting set of extracted events. 

R2: Allowing for diverse co-occurrence relationships. 
The analyst should be able to find co-occurrence patterns 
involving the same or opposite kinds of events for different 
target locations and temporal relations. 

R3: Interactive spatiotemporal visualization capable 

to accommodate long time series. The analyst must be able 
to see the overall distribution of the extracted relevant 
events over space and time and, when desired, focus on 
neighborhoods of interesting locations and/or on particu-
lar time intervals. 

4 ANALYTICAL FRAMEWORK 

The general analytical pipeline for event co-occurrence 
analysis is shown in Fig. 4. It works in an iterative process, 
in which the analysts can return to any of the previous 
steps, e.g., to modify the relevance predicates, choose an-
other attribute, or transform the data. 

Data Preprocessing. The pre-processing (Fig. 5a) may 
include handling of missing values, data aggregation by 
suitable time steps (e.g., hourly measurements into daily 
summaries) and/or areas, data smoothing for reducing the 
noise, and calculation of overall statistical criteria, such as 
normality, for each attribute. The criteria show the general 
features of the attributes, thus helping the analyst to deter-
mine which attributes may have distinctive co-occurrence 
patterns. 

Event Extraction. This stage includes choosing an at-
tribute to be used for relevant event definition (Fig. 5b), ad-
justing time series of the selected attribute (Fig. 5c), and di-
vision of its value range (Fig. 5d), as explained in subsec-
tion 3.2. In response, the corresponding set of relevant 
events is extracted from the data. 

Event Visualization. The extracted relevant events are 
visualized so that their spatial locations and temporal ref-
erences could be easily identified (Fig. 5e). The analyst is 
able to focus on all events that occurred at a chosen target 
location during the whole time period. 

Pattern Extraction. The analyst selects the attribute 
value intervals specifying the relevance predicates P and Q 
(in particular, they may be the same); see the definitions in 
Section 3.1. The analyst also specifies the temporal relation 
that must hold between the times of co-occurring events 
and chooses a target location. The co-occurrence patterns 
are extracted based on Definition 3, and their strengths are 
determined (Definition 5).  

Pattern Exploration. Analysts interactively explore the 
extracted co-occurrence patterns from different perspec-
tives. For example, they can sort the patterns associated 
with different locations to find which locations have 
stronger co-occurrence patterns with the target location 
and how far they are located in space with respect to the 
target location.  

The pipeline is supported by a component architecture 
shown in Fig. 4. It consists of three tightly interrelated com-
ponents: (1) Event Extractor that implements the first two 
steps of the pipeline, enabling interactive extraction of rel-
evant events from original spatial time series. (2) Event 
View visualizes the extracted event within the spatiotem-
poral context. (3) Co-occurrence Explorer in which users 
can explore and understand co-occurrence patterns from 
different perspectives through multiple interactive opera-
tions. Of the three components, the event view provides 
the primary spatiotemporal context, which is also im-
portant for the other two components. 
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Fig. 4. Analytical Pipeline. The pipeline enables drilling down from original data to pattern discovery. It is supported by three interactive visual 
components marked with different background colors. 
 

 

Fig. 5. Illustration of event extraction and visualization. (a) Data preprocessing. (b) Attribute selection. (c) Time series variation. (d) Division. (e) 
Event Visualization. Blue cubes represent objects having fixed spatial coordinates, and colorful cubes represent attributes.  

5 VISUAL DESIGN 

The main interface of COPE is shown in Fig. 8. The event 
view, which is the core visual component, is placed on the 
top left of the interface. Since there is no need to use the 
event extractor and the co-occurrence explorer simultane-
ously, the two components are put into a tab control at the 
bottom of the interface. The user can switch between the 
two components by clicking the corresponding tabs. This 
section describes the visual designs of the three visual com-
ponents in detail. 

5.1 Event Extractor 

According to the requirement R1, the event extractor ena-
bles flexible definition and extraction of relevant events. It 
implements the simplified approach to creating relevance 
predicates as explained in Section 3.2. The current proto-
type implementation supports creating predicates based 
on a single numeric attribute. The component combines 
multiple visualization techniques shown in Fig. 6. 

  
Fig. 6. Event extractor. (a) Attribute histograms for selecting an 
attribute based on the value distribution properties. (b) A slider and a 
checkbox used to transform the original values into differences. (c) A 
value range division control consisting of two vertical histograms and 
a boxplot. (d) A time series view showing the division results.  

On the left (Fig. 6a), there is a scrollable list containing 

frequency histograms showing the value distributions of 
all attributes. The display reflects results of data prepro-
cessing. The background of each histogram is colored ac-
cording to the normality of the attribute. The analyst can 
select an interesting attribute according to the data distri-
bution (the histogram of the selected attribute is enclosed 
in a rectangular frame) and use a slider (Fig. 6b) to trans-
form the time series. If the slider value is N, the time series 
is transformed to represent the changes relative to the Nth 
time step before each step. In this case, the attribute values 
for all locations at the first N time steps are set to zero, be-
cause they do not have previous records for comparison. 
We also put a checkbox at the right side of the slider to 
support two transformation options, 1) the absolute differ-
ence to the previous value (the checkbox is not checked); 2) 
the difference in percentage to the previous values (the 
checkbox is checked).  

After selecting an attribute, its value distribution is 
shown by two frequency histograms and a box plot in the 
division control (Fig. 6c). The two histograms are oriented 
vertically and have a common axis corresponding to the 
value range of the attribute. In the histogram positioned on 
the left of the axis, the bars correspond to equal value in-
tervals of the attribute, analogously to the histograms in 
Fig. 6a. The histogram positioned on the right of the axis 
has three bars corresponding to the current division of the 
value range by two thresholds alow and ahigh, as explained in 
Section 3.2. The bars of the right histogram are painted in 
blue, yellow, and red colors corresponding to the low, me-
dium, and high attribute values, respectively. The same 
colors are used to paint the background of the left histo-
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gram; hence, the background represents the current divi-
sion. The threshold values can be changed by dragging the 
lower edge of the red rectangle and the upper edge of the 
blue rectangle. The two histograms will also change when 
applying a transformation to the time series. 

The result of the division is also shown in the time series 
view (Fig. 6d) with the time mapped onto the X-axis and 
the original or transformed attribute value range onto the 
Y-axis. The gray curves represent the time series of all lo-
cations. In the background, there is a sequence of seg-
mented vertical bars each corresponding to one time step. 
The bars are divided into red, yellow, and blue segments 
showing the proportions of attribute values attained at 
each time step that fit into the low, medium, and high 
value subranges. By observing the sizes of the segments, 
the analyst can adjust the thresholds depending on 
whether he/she is interested in examining fewer events 
with more extreme attribute values or a larger number of 
events with values that were attained more frequently. 

5.2 Event View 

The event view, as in Fig. 1b, is the core visual component 
of our approach providing a spatiotemporal context to ac-
commodate all the extracted events for further co-occur-
rence exploration. The event view has a tabular structure, 
which is consistent with the structure of the time series 
view (Fig. 6d). The columns and rows of the table corre-
spond to the bars and the bar segments of the time series 
view. It means that each column corresponds to a time step 
and each row to one of the value subranges of the selected 
attribute resulting from the division. The top row corre-
sponds to the high values, the bottom row to the low val-
ues, and the middle row to the medium values. Each cell 
of the table contains a map on which the locations whose 
values lie within the corresponding subrange are repre-
sented by dots. This enables the analyst to observe the ge-
ographical positions of the events defined by the current 
attribute range division. The dots are painted in red (top 
row), yellow (middle row), and blue (bottom row), consist-
ently with the color encoding in the event extractor (Fig. 6). 
The gray shading of the background maps encode the 
numbers of objects shown on the maps. The darker a map 
is, the more objects are on it. We use a grayscale to reduce 
the visual clutter.  

When the time series is long (i.e., has many time steps), 
some of the columns can be folded by clicking on the cor-
responding time labels; as a result, the remaining columns 
can be better seen. The gray shading of the background 
maps is not used within the folded columns. For example, 
in Fig. 8, the years between 1986 and 2004 are folded. The 
map size can also be adjusted through mouse wheel oper-
ation.  

An information panel on the right of the map view 
shows the currently selected attribute, the time lag for 
computing the value change, the proportion of the events 
in each row, and the current analysis task performed with 
the co-occurrence explorer, when the latter is active. 

By clicking on a dot representing an event in a map, the 
user selects one of the locations to be the target location. 

Let l* be the target location and E* be all events that oc-
curred at this location, including the events with the high, 
medium, and low attribute values. After the selection of l*, 
a curve is drawn to connect all events from E* in the chron-
ological order across the event view. This curve is further 
referred to as trend line. COPE highlights the locations of 
the events on different maps along the trend line (see the 
big black circles on the trend line in Fig. 8). 

Depending on whether the selection of l* was done in 
the top, middle, or bottom row of the event view, a rele-
vance predicate P (Definition 2) is created that selects the 
high, medium, or low values of the attribute, respectively. 
All events shown in the selected row make the set E(P) of 
relevant events according to P. Those events from E(P) that 
occurred at the selected target location l* will be called the 
target events. The set of target events may be denoted as 
E*(P): E*(P) = E*  E(P). 

5.3 Co-occurrence Explorer 

The co-occurrence explorer (Fig. 1c) contains a co-occur-
rence list representing visually the characteristics of the ex-
tracted co-occurrence patterns C*j between the target loca-
tion l* and each location lj  L, including also the target lo-
cation itself. The co-occurrence explorer also includes a set 
of subcomponents for controlling pattern extraction and 
exploration process (Fig. 8, d-i). Particularly, one of the 
controls (Fig. 8e) allows the analyst to specify the second 
relevance predicate Q (Definition 3). For this purpose, the 
analyst just needs to select the high, medium, or low 
subrange of the attribute values. Accordingly, the set of rel-
evant events E(Q) is selected; E(Q) = E1(Q)  E2(Q), …, 
Em(Q), where Ej(Q) is the subset of relevant events that oc-
curred at the location lj. Another control allows choosing 
the temporal relation R, as in Fig. 8f. For each location lj, 
the co-occurrence pattern C*j is generated according to Def-
inition 3. That is, the pattern includes every event e  Ej(Q) 
for which e*  E*(P) such that e R e* = true, i.e., there exists 
some event e* in the target event set E*(P) that e has the 
temporal relation R to the event e*. 

5.3.1 Co-occurrence List 

The co-occurrence list contains a horizontally arranged set 
of glyphs each representing the co-occurrence pattern C*j 
for one of the locations lj, 1  j  m. A glyph consists of sim-
ple components involving commonly used visualization 
techniques: bar chart, proportional symbol size, and color 
coding (Fig. 7).  
 

 
Fig. 7. The glyph design for representing a co-occurrence pattern.  

The size of the circle in a glyph represents s*, i.e. the 
strength of the pattern C*j relative to l*. The angular size of 
the ring segment attached to the circle shows sj = 
|C*j|/|E*(P)|, i.e., the strength of the pattern C*j relative 
to lj (Definition 5). Simultaneously showing the s* and sj can 

time 
Circle darkness indicates the proximity to the target location. 

Bar length encodes the attribute value. 

Circle size encodes the strength of C*j relative to l*. 

Ring angular span encodes the strength of C*j relative to lj. 

Bar color indicates the attribute value subrange.  
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better represent the co-occurrence patterns. Thus, a bigger 
s* and a smaller sj means |Ej(Q)|>>|E*(P)|, i.e. the higher 
s* may be occasionally caused by the frequent occurrence 
of Ej(Q), while  bigger s* and sj reflect stronger co-occur-

rence relationships between lj and l*. The grayscale shad-
ing of a circle encodes the geographic distance between the 
location lj and the target location l*; darker shades mean 
smaller distances.  

 
Fig. 8. Exploring which countries had a high per capita income growth rate when China’s per capita income increased quickly. The countries 
are sorted according to the distances between them and China. (a-k) are the subcomponents of the three visual components. 

In the bar chart, the vertical axis represents time, and 
each bar corresponds to a time step. The glyph in Fig. 7 
shows 12 time steps. The length of a bar represents the at-
tribute value attained at the location lj at the corresponding 
time step, while the color indicates its value subrange. This 
design provides more detailed context information con-
cerning each location lj.  

The co-occurrence list contains a glyph for the target lo-
cation l*. When the chosen temporal relation R is ‘same 
time’ and Q = P, the circle size in the glyph will be the big-
gest among all. The circle is always the darkest since in this 
case the distance to the target location is zero (see the glyph 
of China in Fig. 8). 

5.3.2 Interactive operations 

The interaction controls support the retrieval and explora-
tion of event co-occurrence patterns. 

Selecting a target location. COPE supports three ways 
for selecting an initial target location. First, the analyst can 
directly select a spatial object in the event view. Second, the 
analyst can enter an object’s name in a search box (Fig. 8d). 
Third, the analyst can select locations from a projection 
view (Fig. 8k), which is triggered by clicking a button next 
to the search box (Fig. 8j). The locations are projected ac-
cording to the similarity of their event time series by means 
of dimensionality reduction. We use the T-SNE method, 
but other techniques can also be used. Collision detection 
is utilized to avoid overlaps in the projection. The projec-
tion provides an overview of all locations regarding the ex-
tracted events. The analyst can apply different strategies 
for selecting the target location, e.g., take one from a large 
or small cluster, or take a location that is most dissimilar to 

the others. The currently selected location is highlighted in 
the projection, its name is shown in the search box, and 
COPE generates its trend line to connect the positions of 
the location along the time. 

 Selecting the second relevance predicate Q. The sec-
ond predicate may be the same as or different from P, 
which is the predicate selecting the target event set. Ac-
cording to the approach explained in Section 3.2, the ana-
lyst selects either the same value subrange as for P (i.e., Q 
= P) or one of the two other subranges.  To enable this, 
COPE provides three checkboxes, each corresponding to 
one subrange. For example, in Fig. 8e, the first checkbox is 
selected. The corresponding predicate selects the high val-
ues of the attribute.  

Setting the temporal relation. The temporal relation R 
can be set using a range slider (Fig. 1c). Each tick of the 
slider corresponds to a time step. The range slider has two 
bars, which have three usages that implement all the five 
types of temporal relations (Fig. 3): 1) two bars are set to 
zero (default setting) to select the relation ‘same time’, 2) 
two bars are set at the same tick to specify relationships 
‘before by t steps’ or ‘after by t steps’, and 3) two bars 
are set to different values to generate a temporal interval 
for selecting the relations ‘before ’ or ‘after’, as in Fig. 1. 

Setting a threshold for the co-occurrence strength. 
COPE provides a range slider for quantitatively selecting 
co-occurrence patterns with specific strengths, as in Fig. 8g. 
The two bars of the range slider represents the minimum 
and maximum strength thresholds. For each location hav-
ing the strength of the co-occurrence pattern C*j within 
[minimum, maximum], the member events of the pattern C*j 
are connected to the glyph of lj by curved lines. This allows 
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the user to explore the details of strong co-occurrence pat-
terns. The lines are bundled to reduce the clutter in the 
event view.  

Glyph sorting. COPE provides two choice buttons to 
select the way of sorting the glyphs, as in Fig. 8h. By de-
fault, the glyphs are sorted according to the strengths of 
the co-occurrence patterns. They can also be sorted 
according to the distances of the respective locations to the 
target location l*. This arrangement can reveal anomalies 
when distant objects have strong co-occurrence patterns, 
or nearby objects have very weak co-occurrences.  

Event overview. This subcomponent (Fig. 8i) is a min-
iature of the time series view in Fig. 6d; the original view 
is hidden in the pattern exploration mode. Besides the di-
vision into high, medium, and low attribute values, this 
subcomponent also shows for each time step whether it is 
folded in the event view. The bars for the folded steps have 
unsaturated coloring. The component can also be used for 
folding and unfolding time steps by mouse clicking or 
dragging. 

 

6 EVALUATION 

This section reports our evaluation of the effectiveness of 
COPE through two case studies on different spatiotem-
poral scales and an expert review. As we cannot describe 
the case studies in full detail, we just give a few examples 
of questions that can be answered using COPE and show 
how the answers can be obtained. 

6.1 Economic Statistical Data 

This dataset contains long-term statistic records (1800-
2008) of three economic criteria, namely, per capita income, 
life expectancy, and population, of 199 countries 
(http://bost.ocks.org/mike/nations/). We only select the 
records after 1970, in which most countries have relatively 
complete records.  

Q1: Which countries often had high per capita income 
growth rates simultaneously with China? 

This question exemplifies the most basic exploration 
task, in which the same attribute subrange is used for the 
target events and the co-occurring events (i.e., the rele-
vance predicate Q is the same as P), and the temporal rela-
tion is ‘same time’. We select the attribute ‘per-capita in-
come’ and transform the original values in the time series 
into the differences with respect to the previous time steps 
by setting the time lag to 1 using the slider shown in Fig. 
6b. We set the upper threshold ahigh to 5% to select the 
events of the growth rate higher than 5%, which puts 14.5% 
records in the top row of maps in the event view. The lower 
threshold alow is irrelevant to this task; it can take an arbi-
trary value. The information concerning the task and the 
corresponding event selection is shown in Fig. 8c. Accord-
ing to the analysis goal, the upper checkbox is checked in 
the co-occurrence explorer, as in Fig. 8e, which selects the 
high-value subrange for the co-occurring events, i.e., the 
set E(Q). The time slider is set to 0 (Fig. 8f), which selects 
the temporal relation ‘same time’, and the glyphs in the co-
occurrence explorer are chosen to be sorted according to 
the strengths of the co-occurrence patterns (Fig. 8h). We 
click on the location of China in the top map corresponding 

to the year 1984, when China had the growth rate above 
5%. As a result, China becomes the target location, and the 
target event set is extracted, i.e., the events of China having 
the growth rate above 5%. All events corresponding to 
China become connected by a trend line in the event view.  

The result of these selections (Fig. 8a) shows that Vi-
etnam, Equatorial Guinea, South Korea, and Hong Kong 
are the top 4 countries/areas with the strongest co-occur-
rence patterns (more than 38% as in Fig. 7g). From these, 
Vietnam and South Korea are neighbors and major trading 
partners of China. By exploring the details of the co-occur-
rence patterns we find that the co-occurrences of South Ko-
rea mainly took place at the early stage of the period. This 
is opposite to Vietnam, which is more similar to China (see 
two red rectangles in Fig. 8a). Furthermore, we see that Vi-
etnam has a larger angular ring span than other three coun-
tries, meaning that its rapid growths always co-occurred 
with those of China, and seldom occurred independently.  
According to the related literature [49], we know that Vi-
etnam and China have strong economic links and mutual 
investments. An economic expert (Section 8) also told us 
that there have been many Chinese scholars studying the 
economic interdependence between Vietnam and China. 
Our findings can be used to compare Vietnam to other 
countries that have different co-occurrence patterns, thus 
finding distinguishing characteristics of the China-Vi-
etnam relationships.  

Equatorial Guinea is a special case, which is far from 
China but has a high co-occurrence strength. According to 
the literature [32], we know that the discoveries of large oil 
fields at the beginning of the 90's made the economic de-
velopment of Equatorial Guinea rapid, which proves our 
finding. The expert thinks these findings are potentially 
very interesting, possibly leading to the discovery of im-
plicit relationship among countries, such as teleconnection. 
However, the strong co-occurrence pattern may also be oc-
casional. 

Q2: Which countries often had a negative growth rate 
when China’s per capita income increased quickly? 

 

 
Fig. 9. Co-occurrence pattern between high growth rate in China and 
decline in North Korea.  

We set the lower threshold alow to 0; thus, the low-value 
subrange corresponds to negative growth rates. We select 
this subrange using the bottom checkbox in the co-occur-
rence explorer. We see that the circle sizes of the most 
neighboring countries of China are relatively small, which 
shows that their per capita income was mostly growing 
simultaneously with China. North Korea is an exception; 
its circle is big, indicating a different situation in terms of 
the variation of the per capita income, as shown in Fig. 9. 
It is well known that North Korea’ economy has been de-
clining during that period, which is consistent with our 
finding. However, the decline is not related to the growth 
in China. This example demonstrates that co-occurrence 

http://bost.ocks.org/mike/nations/
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patterns should be interpreted cautiously since they do not 
necessarily mean that the events are somehow related but 

only show that the events frequently co-occur. 

 

Fig. 10. Exploring which cities in China also had bad air quality when Beijing had a smog day during the period of 2015/10/1-2015/11/30, in 
which smog phenomena frequently occurred in China. Event view is zoomed in to clearly show the locations of Beijing’s neighboring cities.

6.2 Air Quality Observation Data of China 

This dataset contains daily values of 7 pollutant attributes 
and 15 meteorological attributes of 196 cities during the pe-
riod 2015/10/01-2015/11/31. During this period, smog 
events frequently happened in different parts of China. Be-
cause the air quality of a city can be affected by the pollu-
tants transmitted from nearby cities, co-occurrence pattern 
analysis can be helpful for finding and understanding 
these effects. 

Q3: Which cities often have serious air pollution when 
Beijing has a smog day? 

We choose the attribute AQI (Air Quality index, the 
higher the value is, the worse the air quality the city has). 
The attribute value range is divided into high, medium, 
and low subranges according to the China Air Quality 
Standard [39]. The cities shown in the top row of maps in 
the event view have the highest AQIs, i.e., the worst air 
quality. The high-value subrange is also chosen for the co-
occurring events. The target location is Beijing, and the 
temporal relation is ‘same time’. The glyphs in co-occur-
rence explorer are sorted according to the distances be-
tween the cities and Beijing. The map view is zoomed in to 
clearly observe the locations of the cities in North China, 
as shown in Fig. 10.  

The co-occurrence patterns of different cities can be 
compared by observing the colors and sizes of their glyphs, 
as in Fig 10. Three neighboring cities, Langfang, Baoding, 
and Tangshan, have relatively big circles, indicating that 
smog often occurs also in the three cities when Beijing has 
a smog day. The finding is consistent with the previous 
studies [38] which reported a strong correlation between 
these cities and Beijing regarding the air quality.  

Tianjin and Beijing are geographically close and have 

similar economic developments. The size of the glyph of 
Tianjin, however, is not as big as the above three cities, 
which is consistent with our previous findings that the 
smog in big cities may not be as serious as in the surround-
ing cities [34].  

We also find several cities which are close to Beijing but 
tend to have much better air quality than Beijing, such as 
Zhangjiakou, Chengde, and Qinhuangdao. According to 
the geographical literature [48], Zhangjiakou and Chengde 
have different terrains (e.g. higher altitude) and meteoro-
logical conditions (longer winter) from Beijing, resisting 
smog formation. Qinhuangdao is located at the seaside, 
which makes pollutants dissipate quickly. 

 

Fig. 11. Groups of the neighboring cities of Beijing. The colors of the 
polygons correspond to different co-occurrence strengths of the smog 
events in the cities to the smog events of Beijing.  

We group the cities according to the strengths of their 
co-occurrence patterns and draw the division result on a 
satellite map. In Fig. 11, the red, yellow and green poly-
gons respectively cover the cities that have high, medium, 
and low co-occurrence strengths. We find that, in general, 



AUTHOR ET AL.:  TITLE 11 

 

smog events of Beijing always have strong co-occurrence 
relationships with those of the cities located in the south 
Beijing (see the red polygon in Fig. 11), while smog events 
of the cities located in the north of Beijing occur more in-
dependently (see the green polygon in Fig. 11).  

Q4: In which cities does the air quality often greatly de-
teriorate one day before this happens in Beijing? 

To answer this question, we use the time slider to 
choose the temporal relation ‘one day before’. We also 
choose the glyphs to be sorted according to the co-occur-
rence strengths.  

The query result is shown in Fig. 12. We find that most 
neighboring cities of Beijing are placed at the beginning of 
the list, i.e., they have the strongest co-occurrence patterns, 
but the size differences of the circles are not as obvious as 
in the previous examples. This contradicts our expectation 
to find the pollution sources of Beijing. We showed the re-
sult to an environmental expert. He told us this was mainly 
because the temporal resolution of the data is low (daily) 
whereas pollutants may spread to neighboring cities 
within a couple of hours. Hence, the available data do not 
allow uncovering such effects. However, he thought that 
our approach and techniques are interesting and valuable. 
At present, environment experts mainly depend on pollu-
tant composition analysis and numeric models to analyze 
the smog transmission mechanism and determine the ex-
ternal pollutant sources of cities. Our approach being ap-
plied to high-resolution data can help them estimate a re-
fined spatial scope by excluding the data of the cities hav-
ing distinctively weaker co-occurrences, thus greatly re-
ducing the data loads for further model computation. Fur-
thermore, to increase the model accuracy, they can set dif-
ferent weights to different cities according to their co-oc-
currence strengths. 

 
Fig. 12. Query result for Q4. The size differences among the circles 
are not obvious, which indicates similarly low co-occurrence 
strengths. 

6.3 Expert feedback 

We conducted a small laboratory study to evaluate how 
easily and effectively people can use COPE to explore co-
occurrence patterns, as well as to find design issues for im-
proving the visualization and interaction design. 

We recruited 12 participants, of which three were fe-
male. The ages were between 29 and 46, with the average 
age 36.67. To better evaluate the learnability of COPE, the 
invited participants were experts from several domains, 
including 3 HCI professors, 1 graphics associate professor, 
2 economic experts, 2 meteorology researchers, 1 traffic ex-
pert, 1 project leader of multiple big data projects, 1 inter-
face designer, and 1 medical professor. These experts did 
not participate in the design of COPE and thus could be 
seen as average users with sufficient education for under-
standing the nature of the data and the analysis tasks 
COPE had been designed to support. 

We used a laptop as the experiment environment, 
which was sufficient for smooth visualization and interac-
tion due to a low computation complexity of COPE. 

Each session of the study started with an explanation of 
the usage of COPE. Then the participants were asked to se-
lect one dataset (Sections 6.1 and 6.2) and explore freely the 
potential co-occurrence patterns during 10-20 minutes us-
ing the experimenter’s assistance when needed. The exper-
imenter encouraged the participants to “think-aloud” and 
report anything they found. The participants were explic-
itly asked to tell any negative comments they might have. 
At the end of each session, the experts were asked which 
functions were the most useful for them. 

In general, the feedback of the participants was positive. 
Most experts agreed that the view operations and query 
controls are easy to learn. They could flexibly set attribute 
thresholds and directly select the relevant events with de-
fault settings. In fact, COPE supports simple types of inter-
active operations, e.g. the user clicks on a location and 
views the sizes and colors of the glyphs in co-occurrence 
list. This was encouraging for novice users, who thus could 
conduct sophisticated exploration tasks with a very brief 
introduction and minimal assistance.  

Most experts believed that COPE can accommodate 
data with quite a large number of spatial locations and a 
long period of time due to the functions of map zooming 
and time folding. They also affirmed that COPE was suita-
ble for analyzing data of different domains. Five experts 
told that they would like to apply COPE to their data as 
soon as possible. For example, the traffic expert would like 
to analyze interrelations between roads: when the vehicle 
flow on a road increases or decreases, which other roads 
have similar or opposite variations? This may reveal issues 
in the road network planning. The economic expert sug-
gested us to apply COPE to datasets with additional eco-
nomic attributes. The medical professor believes that the 
approach of COPE may be used for analyzing epidemic 
spreads and, possibly, disease causes by exploring which 
symptoms frequently co-occur with a disease. 

Three functions, i.e. trend line, location sorting, and lo-
cation search were mostly appreciated by the experts and 
frequently used during the experiment. One HCI professor 
pointed out that the trend line not only clearly showed the 
spatiotemporal features of the events at the target location 
but also allowed convenient selection of the target event 
set. He also told that the object sorting function was useful 
for understanding the effects of the geographic distance on 
the co-occurrence patterns. The interface designer told us 
that the location search function was useful for her because 
she was not familiar with the locations of countries. She 
thinks that this function may also be helpful when there 
are too many different locations on a map making map-
based selection difficult.  

The experts also gave us many valuable suggestions. 
The meteorology researchers told us that pollutants trans-
mission is always affected by the meteorological parame-
ters, such as wind and air temperature. They suggested us 
to add a data filtering function to support exploring the co-
occurrence patterns under different meteorological condi-
tions. The project leader said that COPE may have a good 
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commercial value. He suggested us to add several views 
and functions, such as data table, to form a commercial tool 
specialized in analyzing spatial time series. He also sug-
gested us to develop a web version of COPE to increase its 
visibility and to collect the users’ operation logs and sug-
gestions to further improve its usability. An economic ex-
pert questioned our method of computing the distance be-
tween countries. COPE computes the Euclidean distance 
between the capitals of two countries for simplicity, 
whereas other distance criteria and computing methods 
could be more meaningful. Thus, the geometric centers 
could be taken instead of the capitals, and the Euclidean 
distance could be replaced by the Great Circle distance on 
the Earth surface (which, probably, would not affect much 
the sorting of the glyphs in the co-occurrence explorer). Ac-
cording to his suggestion, we will provide more distance 
options for interactive selection in the future. 

7 DISCUSSION 

The problem of analyzing co-occurrences between various 
events that may be identified in spatial time series is chal-
lenging due to countless possibilities for defining relevant 
events and co-occurrence relationships of interest. We 
have proposed an analytical pipeline to address this prob-
lem, which is supported by a visual analytics system. The 
case studies and expert review demonstrate the effective-
ness of our approach. 

Notably, our framework enables very high flexibility in 
setting the analysis focus and goals. It supports the discov-
ery and exploration of patterns of co-, pre-, and post-occur-
rence of same or opposite events for location pairs. However, 
we also acknowledge some potentially problematic as-
pects. Below we discuss these aspects and possible ways to 
deal with them. 

Relevance definition. The current prototype allows set-
ting relevance predicates based on values of a single nu-
meric attribute. However, as discussed in Section 3.2, this 
is not a principal limitation of our approach, since the idea 
of value domain division can be extended to qualitative at-
tributes and to combinations of multiple attributes. This re-
quires including additional interactive controls in the user 
interface. 

Sensitivity to parameters. The relevance predicates in 
COPE are specified by setting exact threshold values alow 
and ahigh. Even small changes of these values can affect the 
extracted sets of relevant events E(P) and E(Q) and, conse-
quently, the co-occurrence patterns that will be retrieved. 
COPE provides visual tools for exploring the sensitivity to 
the threshold settings and choosing suitable values. Specif-
ically, the histogram and time series displays in the Event 
Extractor provide immediate visual feedback showing the 
effect of current settings on the number and temporal dis-
tribution of the extracted events. 

Confirmation bias. The visualization and visual analyt-
ics communities are highly concerned with the problem of 
possible impacts of human cognitive biases on the course 
and results of the exploration and analysis [20] [54]. From 
the various kinds of cognitive biases [52], users of COPE 
may be especially prone to the confirmation bias, which 
means looking for patterns that confirm their pre-existing 

hypotheses rather than trying to discover something unex-
pected. This may happen, in particular, in selecting target 
locations. The projection display (Fig. 8k) is meant to en-
courage the analyst to consider the entire set of locations 
before selecting. The analyst can explore similarities and 
differences among the locations and, hopefully, find po-
tentially interesting targets that were not previously 
thought of. However, this does not fully preclude the pos-
sibilities for cognitive biases, which is hardly possible at 
all. 

Data noise.  In time series analysis, it is acknowledged 
that data may have irregular fluctuations, that is, noise is 
treated as an indispensable component of time series [47].  
Noise and missing values can be handled in our system us-
ing techniques for data smoothing and interpolation over 
a sliding temporal window. Of course, if the noise results 
from frequently reoccurring measurement errors, the re-
vealed patterns can hardly be trusted. Therefore, the sig-
nificant errors in data need to be detected and corrected 
before the analysis procedure.  

Performance. In general, COPE can accommodate hun-
dreds of objects over a long time points. For good perfor-
mance, we establish various data references using hash 
structures. The initialization of the visual displays involves 
time consuming visual renderings. This process takes sev-
eral seconds and may become longer as the numbers of lo-
cations and time points increase. The initialization step, 
however, improves the scalability of the system and ena-
bles real time responses of interactive operations in the fur-
ther use of the system. Separating the computationally in-
tensive algorithms from the business logic also minimizes 
the CPU and memory usage, allowing COPE to smoothly 
run on a laptop.  

 Scalability of visualization. Scalability issues are 
partly mitigated by the time folding, map zooming, and 
scroll bars in the event view and co-occurrence view. 
COPE, however, will be challenged when the data grows. 
For example, the event view can only simultaneously show 
a limited number of locations and time steps. To show 
more time steps, we have to reduce the width of the maps. 
However, with a large number of time steps, maps are too 
narrow to clearly display the spatiotemporal distribution 
of the events. To cope with this problem, time filtering and 
aggregation can be used to filter out or merge time steps 
without interested events or having similar event distribu-
tions. 

Visual overlapping. During the analysis process, the 
links between the events in the event view and the glyphs 
in the co-occurrence explorer may cover other visual ele-
ments, and it is difficult to trace a link when too many links 
are drawn.  In principle, the links are only used to identify 
locations with specified co-occurrence strengths, which are 
not shown by default. It is uncommon and unnecessary to 
simultaneously highlight too many locations. We have 
considered to use other visual clues instead of the link 
lines, such as adding a border or changing the background 
color of the glyphs. Link lines, however, make the co-oc-
currence patterns traceable in the event view, which is not 
supported by other visual clues. Therefore, we finally 
chose to use the links. 
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Glyph design. Although none of the experts involved 
in the evaluation had problems with interpreting the 
glyphs in the co-occurrence list, we acknowledge that the 
glyphs may appear complicated to average users and see a 
need in a further study of the glyph interpretability. 

Similarity-based projection. The projection (Fig. 8k) 
creates a new, artificial space, in which locations are ar-
ranged based on similarities of their time series, i.e., differ-
ently from their usual arrangement on a geographic map. 
It may be counter-intuitive to users and thus cause inter-
pretation difficulties. This aspect also requires investiga-
tion in further user studies. 

8 CONCLUSION 

This paper has presented a visualization approach to 
the exploration of co-occurrence patterns between 
events in spatial time series. We proposed an analytical 
framework based on three novel visual components for 
defining relevant events and extracting them from spa-
tial time series, visualizing the spatiotemporal distribu-
tion of the events, and exploring event co-occurrence 
patterns between locations. The three components are 
seamlessly integrated within the system COPE, whose 
effectiveness was tested using real-world environmen-
tal and economic data. It can be applied to spatial time 
series of different domains, such as the ocean, census, 
traffic, etc. 

In the future, we plan to improve COPE in two as-
pects. First, we plan to support multi-attribute events, 
which are more common in environmental sciences. 
Second, we plan to address the problem of sensitivity to 
thresholds. We also plan to conduct a thorough empiri-
cal user study to evaluate COPE in both laboratory and 
practical settings.  
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