Intelligent Information Processing and Visualisation for Civil Crisis Management and beyond

Natalia Andrienko & Gennady Andrienko
Fraunhofer Institute AIS
Sankt Augustin
Germany
http://www.ais.fraunhofer.de/and

Presentation Plan

1. The OASIS project
2. Intelligent decision support in crisis management: goals and research directions
3. How it looks like now (live demo)
4. What stands behind
5. Next steps:
 1. Design effective visualisations for analysis and communication
 2. Support data analysis
6. Challenge: extend it beyond OASIS
The Oasis project

Oasis is a DG INFSO co-funded project part of the Sixth Framework Programme (FP6) within the priority “Improving Risk Management”

This is a 4 years Integrated Project which started on the 1st September 2004

http://www.oasis-fp6.org/

Objectives of Oasis

➢ To develop a Disaster and Emergency Management system
 • aiming to support the response operations in the case of large scale as well as local emergencies;
 • providing an IT framework which can be used at the different levels of the Civil protection organisations, European, national or local;
 • facilitating the cooperation between the information systems used by the civil protection organisations.
Our Role and Tasks

➢ Suggest novel decision support tools for crisis managers
 • as a complement to the regular crisis management tools

➢ Orient to the end users:
 • *everything must be very simple and easy!*

➢ Account for specifics of crisis situations:
 • time pressure, stress, information overload

The General Approach

➢ Embedded intelligence:
 = Knowledge-based information processing and visualisation
Presentation Plan

1. The OASIS project
2. Intelligent decision support in crisis management: goals and research directions
3. How it looks like now (live demo)
4. What stands behind
5. Next steps:
 1. Design effective visualisations for analysis and communication
 2. Support data analysis
6. Challenge: extend it beyond OASIS

Our Major Goals

- **Reduce the workload of users**, save their time
 - e.g. by automating routine work
- **Reduce the cognitive load of users**
 - e.g. by automated selection and effective presentation of relevant information
- **Improve the situation awareness**
 - e.g. by automatic detection and highlighting of items requiring attention
- **Promote effective communication** of relevant information between actors involved
 - e.g. by automated presentation design
Our Research Focus

➢ Visual Analytics
 • geovisualisation, general information visualisation
 • combined with computations and database operations
 • to support data analysis and decision making

➢ Visualisation in OASIS:
 • for situation awareness
 • for information communication
 • for response planning

Presentation Plan

1. The OASIS project
2. Intelligent decision support in crisis management: goals and research directions
3. How it looks like now (live demo)
4. What stands behind
5. Next steps:
 1. Design effective visualisations for analysis and communication
 2. Support data analysis
6. Challenge: extend it beyond OASIS
Presentation Plan

1. The OASIS project
2. Intelligent decision support in crisis management: goals and research directions
3. How it looks like now (live demo)
4. What stands behind
5. Next steps:
 1. Design effective visualisations for analysis and communication
 2. Support data analysis
6. Challenge: extend it beyond OASIS

Basic Notions
Instantiation (Example)

Event time: Thursday 18.05.2006 12:13
The impact zone has been estimated

Instantiation (Example) cont.

Event time: Thursday 18.05.2006 12:13
The impact zone has been estimated

Taking the Time into Account

Fire at 21:00 vs. at 04:00

Knowledge Types

- Descriptive (declarative) knowledge
 - XML; can be easily modified and extended

- Operational (procedural) knowledge
 - Information processing procedural knowledge
 - Find latent risks
 - Find endangered people (and other items)
 - Compute endangered population
 - Find suitable shelters
 - Incorporated in program code (Java)
 - Hope that no major changes to the procedures will be needed
UI and Visualisation

- *Everything must be very simple and easy!*
 - Friendly user interface
 - Visualisation is essential
 - Simple map
 - Icons with easily recognisable meanings
 - Semantics needed!
 - The user should be bothered as little as possible
 - Try to recognise the meanings of data items automatically
 - e.g. by looking for keywords

An Example of Semantics Acquisition

Data (population by districts):

- [Diagram of a table or interface showing population data by districts]
How It Works

Not an interval: 96>95!

This is why this people category is specially dealt with

The General Conception

[Diagram showing the general conception process with various components and their relationships]

- Domain-specific
 - Domain ontology
 - Conceptual index of the data
 - Data
 - Emergency management expert
 - Roles and information needs

- Domain-independent
 - Meta-information describing the selected data
 - Selected data
 - Visualisation design
 - Knowledge
 - Presentation specification
 - Presentation renderer
 - Display
 - Recipients

Good match

False match

Not an interval: 96>95!
Presentation Plan

1. The OASIS project
2. Intelligent decision support in crisis management: goals and research directions
3. How it looks like now (live demo)
4. What stands behind

5. Next steps:
 1. Design effective visualisations for analysis and communication
 2. Support data analysis

6. Challenge: extend it beyond OASIS

Visualisation Design for Analysis and Communication

- What factors essentially influence the design?
 - Purpose: analyse, inform, alert, instruct, ???
 - Recipient’s profile: role, task, knowledge and experience, acquaintance with the situation and with the territory, ???
 - ???

- What must be known about the information to visualise?
 - The meaning of information components: what aspects?
 - Relationships between them; what relationships?

- How to specify this meta-information in a domain-independent way?
 - Ontology of information and data types and relations
 - Language to describe information and data
Visual Communication: Current Status

An interactive SVG presentation can be built automatically for informing people who don’t have access to the OASIS system.

Thanks to A. Neumann (ETH, CARTO.NET) for support.

Still a long way to go…

Intelligent Support of Data Analysis

- Multitude of possible analysis tasks
- Data complexities: very large volumes, multidimensionality, space, time
- Need to use multiple diverse tools: visualisation and display manipulation, data manipulation, querying, computations
- Human factors: low qualification of end users, lack of experience in analysis
 - Everything must be simple and easy!
- Specifics of crisis situations: time pressure
 - Everything must be fast and efficient!
Approach in OASIS

- Select a limited set of tasks and data types relevant to disaster management
- Design procedures to accomplish the tasks in automated or semi-automated mode
 - Database operations + data transformations + data mining + visualisation

Relevant Data Types

- Time series of measurements taken in a number of locations
 - e.g. air or water pollution measured by statically installed sensors
 - May be very long!
- Events occurring in various places at various time moments
 - e.g. disease cases or forest fires
 - e.g. measurements taken in sample locations
 - May be very numerous!
Relevant Analysis Tasks

- Build a (mental) model of the behaviour of a hazardous phenomenon or process
 - to predict the further development
 - to assess the situation in places with no data
- Detect places with high level of danger or with dangerous trends
- Find relationships between the hazardous phenomenon and other phenomena
 - e.g. weather, land cover, migration of animals,…
 - to explain the reasons or mechanisms of the hazardous phenomenon

Build on Our Experience

- How can tool designers know what tools are needed?
 - What capabilities should be provided?
 - What kinds of tools can properly do this? What requirements they should meet?
- How several tools providing complementary capabilities can be properly combined?
- How can we teach the users when and how to apply what tools?
Presentation Plan

1. The OASIS project
2. Intelligent decision support in crisis management: goals and research directions
3. How it looks like now (*live demo*)
4. What stands behind
5. Next steps:
 1. Design effective visualisations for analysis and communication
 2. Support data analysis
6. Challenge: extend it beyond OASIS

Extend It Beyond OASIS?

➢ The need exists!
 • People wishing to analyse data often ask us what to begin with, what tools to use, how, …

 opioids 🍀 Exploratory Data Analysis is complex!
 ➔ about 700 pages in our book… and still no recipes with guaranteed success

➢ EDA relies on human vision and imagination
 ➔ It can hardly be done automatically by an intelligent software system
What an Intelligent System Can Do

- Facilitate the work of a human analyst
 - Transform the data...
 - Visualise the data...
 - Suggest appropriate tools for further analysis...
 - …depending on the tasks and data characteristics

Possible approaches

- Generic tasks (*too numerous; *may be hard to understand and inconvenient for users*)
- Reusable procedures (analysis scenarios)
 - built by expert analysts for specific tasks
 - applicable to similar data and tasks

Fundamental Needs

- Ontology to describe data characteristics and structures
- Ontology of analysis tasks
- Ontology of analysis operations (operation types, inputs, outputs, applicability conditions)
- Language to represent analysis procedures (operation sequence, conditional branching, loops, recursion)

- Cooperation?